3-j 기호(3-j symbols)
Pythagoras0 (토론 | 기여)님의 2012년 11월 19일 (월) 08:06 판
개요
- 3차원 회전군 SO(3)의 기약표현과 관련된 이론
- 두 기약표현의 텐서곱을 기약표현으로 분해할 때, 기약표현의 기저로 구면조화함수(spherical harmonics)를 사용하는 경우 3-j 기호가 필요
$$\begin{pmatrix}
j_1 & j_2 & j_3\\
m_1 & m_2 & m_3
\end{pmatrix}$$
주요 성질
- relation between 3j-symbol and Clebsch-Gordan coefficient
- Racah formula for 3j-symbol
- explicit formula
- orthogonality relation
- Wigner-Eckart theorem
- 테이블
- 강의
구면조화함수에의 응용
- 구면조화함수(spherical harmonics)에 대하여 다음이 성립
\[ \begin{align} & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} \]
관련된 항목들
용어번역
- 셋 제이 기호 three j symbol
- 물리학 용어집