Q-이항계수 (가우스 다항식)
http://bomber0.myid.net/ (토론)님의 2010년 1월 15일 (금) 13:25 판
이 항목의 스프링노트 원문주소
개요
- 이항계수의 q-analogue
- 가우스 다항식(Gaussian polynomial)으로 불리기도 한다
양자평면
- 세 변수 \(x,y,q\) 사이에 다음과 같은 관계를 정의
\(xy=qyx,xq=qx,yq=qy\) - 거듭제곱의 전개
\((x+y)=x+y\)
\((x+y)^2=x^2+(1+q)xy+y^2\)
\((x+y)^3=x^3+(1+q+q^2)x^2y+(1+q+q^2)xy^2+y^3\)
\((x+y)^4=x^4+(1+q+q^2+q^3)x^3y+\left(1+q^2\right) \left(1+q+q^2\right)x^2y^2+(1+q+q^2+q^3)xy^3+y^4\)
q-이항계수
- 정의
\({n \choose r}_q={{[n]_q!} \over {[r]_q![n - r]_q!}}=\frac{(q;q)_n}{(q;q)_r(q;q)_{n-r}}=\frac{(1-q)_q^n}{(1-q)_q^r (1-q)_q^{n-r}}\) - 예
\({4 \choose 1}_q=1+q+q^2+q^3\)
\({4 \choose 2}_q=(1+q+q^2)(1+q^2)=1+q+2q^2+q^3+q^4\)
\({5 \choose 1}_q=1+q+q^2+q^3+q^4\)
\({5 \choose 2}_q=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\) - \(n\)이 작을 경우에 대한 q-이항계수의 목록 참조
점화식
- 이항계수와 조합에서 얻은 식의 q-analogue
\({n\choose r-1}_q+q^r{n\choose r}_q={n+1\choose r}_q\) - 예 q-이항계수의 목록 항목 참조
\({4\choose 1}_q+q^2{4\choose 2}_q={5\choose 2}_q\)
\(1+q+q^2+q^3+q^2(1+q+2q^2+q^3+q^4)=1+q+q^2+q^3+q^4+q^2(1+q+q^2+q^3+q^4)=\left(1+q^2\right) \left(1+q+q^2+q^3+q^4\right)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)