윅 정리 (Wick theorem)

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 29일 (수) 07:59 판 (새 문서: ==개요== * m-점 함수의 계산을 조합론적으로 이해할 수 있음 ==가우시안 적분에서의 결과== * 1차항이 있는 [[N차원 가우시안 적분|d-차원 ...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • m-점 함수의 계산을 조합론적으로 이해할 수 있음


가우시안 적분에서의 결과

$$ \begin{aligned} Z_{\bf b}:&=\int_{{\bf R}^d} d{\bf v} ~~\exp(-{\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) \\ &= (2\pi)^{d/2} (\det A)^{-1/2} \exp({\scriptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b})\\ &=Z_0 \exp({\scriptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b}) \end{aligned} $$


m-점 함수(m-point function)

  • 1부터 d까지의 수로 구성된 m개의 인덱스 $i_1 ,\dots , i_m$에 대하여, $m$-점 함수를 다음과 같이 정의

$$ \langle v^{i_1},\dots, v^{i_m}\rangle : = \frac{1}{Z_0}\int_{{\bf R}^d} d{\bf v} ~~\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v})v^{i_1}\dots v^{i_m}. $$

미분을 통한 계산

  • $Z_{\bf b}$는 반복적인 미분을 통하여 계산할 수 있다

$$ \begin{aligned} \frac{\partial Z_{\bf b}}{\partial b^i} &= \frac{\partial}{\partial b^i}\int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v})\\ {} &= \int_{{\bf R}^d} d{\bf v} ~~ \frac{\partial}{\partial b^i}\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) \\ {} &= \int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) v^i \end{aligned} $$

  • 1점 함수 $\langle v^i \rangle$는 다음과 같다

$$ \langle v^i \rangle = \frac{1}{Z_0} \frac{\partial Z_{\bf b}}{\partial b^i}\vert _{{\bf b} =0} = \frac{\partial}{\partial b^i} \exp({\scriptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}} $$

  • m-점 함수 $\langle v^{i_1}\dots v^{i_m}\rangle$는 다음과 같다

$$ \begin{aligned} \langle v^{i_1}, \dots, v^{i_m}\rangle =& \frac{1}{Z_0} (\frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}Z_{\bf b})_{\textstyle \vert _{{\bf b} =0}}\\ {}=& \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}} \exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\textstyle \vert _{{\bf b} =0}} \end{aligned} $$


윅 정리

윅 정리

$$\displaystyle \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}}= A^{-1}_{\textstyle i_{p_1},i_{p_2}} \cdots A^{-1}_{\textstyle i_{p_{m-1}},i_{p_m}},$$ 여기서 합은 $i_1,\cdots, i_m$의 모든 쌍 $(i_{p_1},i_{p_2}), \dots, (i_{p_{m-1}},i_{p_m})$에 대하여 행한다

$$\langle v^1,v^2 \rangle=A^{-1}_{1,2}$$ $$\langle v^1,v^1 \rangle=A^{-1}_{1,1}$$ $$\langle v^1,v^2,v^3,v^4 \rangle=A^{-1}_{2,3}A^{-1}_{1,4}+A^{-1}_{2,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,2}$$ $$\langle v^1,v^1,v^3,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,1}$$ $$\langle v^1,v^1,v^1,v^4 \rangle=3A^{-1}_{1,4}A^{-1}_{1,1}$$ $$\langle v^1,v^1,v^4,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,4}+A^{-1}_{4,4}A^{-1}_{1,1}$$ $$\langle v^1,v^1,v^1,v^1 \rangle=3A^{-1}_{1,1}A^{-1}_{1,1}$$


  • 다음 값의 계산

\[I=\frac{\int_{\mathbb{R}^2}x^4y^2e^{-(x^2+xy+2y^2)}\,dxdy}{\int_{\mathbb{R}^2}e^{-(x^2+xy+2y^2)}\,dxdy}\]

  • 윅 정리를 적용하기 위해 다음을 확인

$$ A=\left( \begin{array}{cc} 2 & 1 \\ 1 & 4 \\ \end{array} \right),\quad A^{-1}=\left( \begin{array}{cc} \frac{4}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \\ \end{array} \right) $$

  • 구하려는 값은 다음과 같다

$$ I=\langle v^1,v^1,v^1,v^1,v^2,v^2 \rangle=12 W_{1,1}W_{1,2}^2+3 W_{1,1}^2W_{2,2}=\frac{144}{343} $$ 여기서 $W=A^{-1}$


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료