1차원 가우시안 적분

수학노트
Wiessen (토론 | 기여)님의 2009년 11월 8일 (일) 03:47 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

간단한 소개

\(\int_{-\infty}^\infty e^{-x^2}\,dx = \sqrt{\pi}\) 의 적분을 Gaussian integral 이라고 한다.

 

\(e^{-x^2}\) 라는 함수는, 시도해 보면 알겠지만, 부정적분이 잘 되지 않는다. 하지만 우리는 부정적분을 알지 못해도 \((-\infty,\infty)\) 에서의 정적분을 계산할 수 있다.

 

 

 

역사

 

 

메모

함수 \(e^{-x^2}\) 는 정규분포함수에도 등장한다. 평균이 \(\mu\) 이고 분산이 \(\sigma^2\) 인 확률변수의 확률밀도함수는

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그

 

1. \(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA\)

\(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA= \int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2}rdrd\theta=2\pi\int_{0}^{\infty}re^{-r^2}dr=2\pi[-\frac{1}{2}e^{r^2}]_{0}^{\infty}=\pi\)

 

 

 

2. \(\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx\)

\(\int\int_{\mathbb{R}^2}e^{-x^2-y^2}dA= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2}dxdy=(\int_{-\infty}^{\infty}e^{-x^2}dx)(\int_{-\infty}^{\infty} e^{-y^2}dy)=(\int_{-\infty}^{\infty}e^{-x^2}dx)^2\)

 

\(\int_{-\infty}^{\infty}e^{-x^2}dx =\sqrt{\pi}\)

\(x=\frac{t}{\sqrt{2}}\),

\(\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}\)