Quantum dilogarithm

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 19일 (수) 05:20 판
둘러보기로 가기 검색하러 가기
introduction

 

 

quantum plane
  • noncommutative geometry
  • \(uv=qvu\)

 

 

 

 

\(\Phi(z)=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

 

asymptotics

 

  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

  •  

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links