Umbral moonshine

수학노트
imported>Pythagoras0님의 2013년 8월 5일 (월) 04:04 판
둘러보기로 가기 검색하러 가기

introduction

  • $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$

$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$

  • properties
    • primes dividing $|M_{24}|$
    • $(p+1)|24$
    • $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$

$k=1$


$k=2$

  • $k=2$ moonshine with $2.M_{12}$
  • decomposition of $\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24$


Jacobi form

$$ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} $$


$\mathcal{N}=4$ super conformal algebra

  • $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
  • two types of representations : BPS and non-BPS


extremal Jacobi forms

mock modular form

umbral forms

umbral groups

umbral moonshine conjecture

related items


computational resource


expositions