Umbral moonshine
introduction
- generalization of Mathieu moonshine
- Let $k\in \{1,2,3,4,6,8\}$ or $\ell=k+1\in \{2,3,4,5,7,9\}$
$$ \frac{24}{\ell-1}-1\in \{23,11,7,5,3,2\} $$
- properties
- primes dividing $|M_{24}|=244823040$
- $(p+1)|24$
- $\rm{PSL}(2,\mathbb{F}_p)\subset M_{24}$
- there exists a relation between all 23 cases of umbral moonshine and K3 sigma models
examples
$k=1$
- Mathieu moonshine corresponds to $k=1$ case
- decomposition of $Z_{K3}=2\varphi_{0,1}(\tau,z)$
$k=2$
- $k=2$ moonshine with $2.M_{12}$
- decomposition of weight 0 and index 2 Jacobi forms
$$ Z_{X_2^{(1)}}=\left(\varphi_{0,1}(\tau,z)^2+2E_{4}\varphi_{-2,1}(\tau,z)^2\right)=144C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(1)}}^{(a)}B_2^{(a)}(z;\tau), $$ $$Z_{X_2^{(2)}}=\varphi^{(3)}=\left(\varphi_{0,1}(\tau,z)^2-E_{4}\varphi_{-2,1}(\tau,z)^2\right)/24=6C_2(z;\tau)-\sum_{a=2}^{2}\Sigma_{X_2^{(2)}}^{(a)}B_2^{(a)}(z;\tau)$$ where $$ \Sigma_{X_2^{(1)}}^{(1)}=q^{-1/12}(18-1872q-26070q^2-\cdots), $$ $$ \Sigma_{X_2^{(1)}}^{(2)}=q^{-1/3}(3+510q+12804q^2+\cdots), $$ $$ \Sigma_{X_2^{(2)}}^{(1)}=q^{-1/12}(1-16q-55q^2-144q^3-\cdots), $$ $$ \Sigma_{X_2^{(2)}}^{(2)}=q^{-1/3}(-10q-44q^2-110q^3-\cdots) $$
Jacobi form
$$ \varphi_{0,1}(\tau,z)=4\left[\left(\frac{\theta_{10}(z;\tau)}{\theta_{10}(0;\tau)}\right)+\left(\frac{\theta_{00}(z;\tau)}{\theta_{00}(0;\tau)}\right)+\left(\frac{\theta_{01}(z;\tau)}{\theta_{01}(0;\tau)}\right)\right],\\ \varphi_{-2,1}(\tau,z)=\frac{-\theta_{11}(z;\tau)^2}{\eta(\tau)^6} $$
$\mathcal{N}=4$ super conformal algebra
- $c=6k$, $k\in \mathbb{Z}_{\geq 1}$
- two types of representations : BPS and non-BPS
extremal Jacobi forms
mock modular form
umbral forms
- $H^{(\ell)}=(H_r^{\ell})_{1\leq r \leq \ell-1}$ is a vector valued mock modular form with shadows
$$ \chi^{(\ell)}\cdot S_{r}^{(\ell)}=\sum_{n\in \mathbb{Z}}(2\ell n+r)q^{(2\ell n+r)^2/4\ell} $$ where $\chi^{(\ell)}=24/(\ell-1)$
- For example, $H^{(2)}$ is a mock modular form with shadow $24\eta(\tau)^3$
- More generally, we have Mckay-Thompson series for each conjugacy class $g\in G^{\ell}$
$$ H_{r,g}^{(\ell)} $$
umbral groups
\begin{array}{l|l|l|I|I} \ell & 2 & 3 & 4 & 5 & 7 & 9 \\ \hline G & M_{24} & M_{12} & & & &\\ \overline{G} & M_{24} & 2.M_{12} & 2.AGL_{3}(2) & GL_2(5)/2 & SL_2(3) & \mathbb{Z}/4 \\ \end{array}
umbral moonshine conjecture
- Quantum black holes, wall crossing and mock modular forms
- Mathieu moonshine
- monstrous moonshine
- Characters of superconformal algebra and mock theta functions
computational resource
expositions
articles
- Cheng, Miranda C. N., and Sarah Harrison. “Umbral Moonshine and K3 Surfaces.” arXiv:1406.0619 [hep-Th], June 3, 2014. http://arxiv.org/abs/1406.0619.
- Cheng, Miranda C. N., John F. R. Duncan, and Jeffrey A. Harvey. 2012. “Umbral Moonshine”. ArXiv e-print 1204.2779. http://arxiv.org/abs/1204.2779.