Göllnitz-Gordon identities and Ramanujan-Göllnitz-Gordon continued fractions
introduction
q-hypergeometric series
identities
\[\sum_{n=0}^{\infty}\frac{q^{n^2+2n}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{3};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{5};q^{8})_{\infty}\]
\[\sum_{n=0}^{\infty}\frac{q^{n^2}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{1};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{7};q^{8})_{\infty}\]
- G. E. Andrews, The Theory of Partitions, 1976, Corollary 2.7., page 21,
\[\sum_{n=0}^{\infty}\frac{q^{n^2+n}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{1};q^{8})_{\infty}(q^{5};q^{8})_{\infty}(q^{6};q^{8})_{\infty}\label{GA}\]
- is \ref{GA} modular?
lifting to rank 2 case
First, we make change $q^2$ into $q$ to get the right form of the identity
Using the Gauss formula (in useful techniques in q-series) \[\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\]
Therefore, \[ \begin{align} \sum_{n=0}^{\infty}\frac{q^{n^2/2+\beta n/2}(-z;q)_{n}}{ (q;q)_{n}}&=\sum_{n=0}^{\infty}\frac{q^{n^2/2+\beta n/2}\sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^j}{ (q;q)_{n}} \\ &=\sum_{i,j\geq 0}\frac{q^{\frac{(i+j)^2+j^2+\beta(i+j)-j}{2}}z^j}{(q)_{i}(q)_{j}}=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2+\beta i+(\beta-1)j}{2}}z^j}{(q)_{i}(q)_{j}} \end{align} \]
- one can obtain the following matrix from the above hypergeometric series
\[ \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}\]
specializations
- $z=q^{1/2}$ and $\beta=2$
$$ \sum_{n=0}^{\infty}\frac{q^{n^2/2+n}(-q^{1/2};q)_{n}}{ (q;q)_{n}}=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+(i+j)}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{3/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty } \left(q^{5/2};q^4\right){}_{\infty }} $$
- $z=q^{1/2}$ and $\beta=0$
$$ \sum_{n=0}^{\infty}\frac{q^{n^2/2+n}(-q^{1/2};q)_{n}}{ (q;q)_{n}}=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{1/2};q^4\right){}_{\infty } \left(q^{7/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty }} $$
- $z=q^{1/2}$ and $\beta=1$
$$ \sum_{n=0}^{\infty}\frac{q^{n^2/2+n}(-q^{1/2};q)_{n}}{ (q;q)_{n}}=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+j}{2}}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{1/2};q^4\right){}_{\infty } \left(q^{5/2};q^4\right){}_{\infty } \left(q^{3};q^4\right){}_{\infty }} $$
history
computational resource
encyclopedia
books
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976
- Sec 7.4
expositions
articles
- Explicit evaluations of Ramanujan-Göllnitz-Gordon continued fraction
- Nayandeep Deka Baruah and Nipen Saikia, 2008
- Certain identities for Ramanujan–Göllnitz–Gordon continued fraction
- K.R. Vasuki, and B.R. Srivatsa Kumar, 2005
- On the Expansion of a Continued Fraction of Gordon
- Michael D. Hirschhorn, 2001
- On the Ramanujan-G¨ollnitz-Gordon Continued Fraction
- Heng Huat Chan and Sen-Shan Huang, 1997
- Partition identities and a continued fraction of Ramanujan
- Krishnaswami Alladi and Basil Gordon, 1993
- Partitionen mit Differenzenbedingungen
- H. Göllnitz, J. Reine Angew. Math. 225 (1967), 154–190.
- Basil Gordon Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. Volume 32, Number 4 (1965), 741-748.
- A Combinatorial Generalization of the Rogers-Ramanujan Identities
- Gordon, B. Amer. J. Math. 83, 393-399, 1961