Göllnitz-Gordon identities and Ramanujan-Göllnitz-Gordon continued fractions
introduction
- 틀:수학노트
- generalization of Weber functions and conformal field theory
- can be obtained by speciliazations of Lebesgue identity
- generalization of Ramanujan-Göllnitz-Gordon continued fraction can be found in the characters of Supersymmetric minimal models
q-hypergeometric series
identities
\[\sum_{n=0}^{\infty}\frac{q^{n^2+2n}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{3};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{5};q^{8})_{\infty}\]
\[\sum_{n=0}^{\infty}\frac{q^{n^2}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{1};q^{8})_{\infty}(q^{4};q^{8})_{\infty}(q^{7};q^{8})_{\infty}\]
- G. E. Andrews, The Theory of Partitions, 1976, Corollary 2.7., page 21,
\[\sum_{n=0}^{\infty}\frac{q^{n^2+n}(-q;q^{2})_{n}}{ (q^{2};q^{2})_{n}}=1/(q^{1};q^{8})_{\infty}(q^{5};q^{8})_{\infty}(q^{6};q^{8})_{\infty}\label{GA}\]
- is \ref{GA} modular? probably not (check this carefully!)
rewriting for Nahm's conjecture in rank 2 case
Recall the Lebesgue identity \[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{z^{j}q^{\frac{i^2+2ij+j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}\]
First, we make change \(q^2\) into \(q\) to get the right form of the identity
Using the Gauss formula (in useful techniques in q-series) \[\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\]
Therefore, \[ \begin{align} \sum_{n=0}^{\infty}\frac{q^{n^2/2+\beta n/2}(-z;q)_{n}}{ (q;q)_{n}}&=\sum_{n=0}^{\infty}\frac{q^{n^2/2+\beta n/2}\sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^j}{ (q;q)_{n}} \\ &=\sum_{i,j\geq 0}\frac{q^{\frac{(i+j)^2+j^2+\beta(i+j)-j}{2}}z^j}{(q)_{i}(q)_{j}}=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2+\beta i+(\beta-1)j}{2}}z^j}{(q)_{i}(q)_{j}} \end{align} \]
- one can obtain the following matrix from the above hypergeometric series
\[A=\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}\]
specializations
Göllnitz-Gordon identities
- \(z=q^{1/2}\) and \(\beta=2\)
\[ \sum_{n=0}^{\infty}\frac{q^{n^2/2+n}(-q^{1/2};q)_{n}}{ (q;q)_{n}}\to \sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+(i+j)}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{3/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty } \left(q^{5/2};q^4\right){}_{\infty }} \]
- \(z=q^{1/2}\) and \(\beta=0\)
\[ \sum_{n=0}^{\infty}\frac{q^{n^2/2}(-q^{1/2};q)_{n}}{ (q;q)_{n}}\to \sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{1/2};q^4\right){}_{\infty } \left(q^{7/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty }} \]
non-modular example
- \(z=q^{1/2}\) and \(\beta=1\)
\[ \sum_{n=0}^{\infty}\frac{q^{n^2/2+n/2}(-q^{1/2};q)_{n}}{ (q;q)_{n}}\to\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+j}{2}}}{(q)_{i}(q)_{j}}=\frac{1}{\left(q^{1/2};q^4\right){}_{\infty } \left(q^{5/2};q^4\right){}_{\infty } \left(q^{3};q^4\right){}_{\infty }} \]
search for other b's
- Let \(f_{A,\vec{b},c}\) be as in Nahm's conjecture
specialization of Lebesgue identity
- \(\vec{b}=(1/2,0)\), http://oeis.org/A080054
\[f_{A,B,0}=\frac{(q^2;q^4)_{\infty}}{(q;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\]
- \(\vec{b}=(1/2,1)\), http://oeis.org/A001935
\[f_{A,B,0}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\]
- \(\vec{b}=(1/2,-1)\), http://oeis.org/A001935
\[ f_{A,B,0}=\frac{2}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}} \]
non-specialization of Lebesgue identity
- \(\vec{b}=(0,0)\), Slater 36 and http://oeis.org/A036016
\[ \sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}}}{(q)_{i}(q)_{j}}= \frac{\left(Q^3;Q^8\right){}_{\infty } \left(Q^5;Q^8\right){}_{\infty } \left(Q^8;Q^8\right){}_{\infty }}{\left(Q;Q^4\right){}_{\infty } \left(Q^3;Q^4\right){}_{\infty } \left(Q^4;Q^4\right){}_{\infty }} =\frac{1}{\left(Q;Q^8\right){}_{\infty } \left(Q^7;Q^8\right){}_{\infty } \left(Q^4;Q^8\right){}_{\infty }}=\frac{1}{\left(q^{1/2};q^4\right){}_{\infty } \left(q^{7/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty }} \] where \(Q^2=q\)
- \(\vec{b}=(1,1)\), Slater 34 and http://oeis.org/A036015
\[ \sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+(i+j)}}{(q)_{i}(q)_{j}}= \frac{1}{\left(Q^3;Q^8\right){}_{\infty } \left(Q^4;Q^8\right){}_{\infty } \left(Q^5;Q^8\right){}_{\infty }}=\frac{1}{\left(q^{3/2};q^4\right){}_{\infty } \left(q^{2};q^4\right){}_{\infty } \left(q^{5/2};q^4\right){}_{\infty }} \] where \(Q^2=q\)
- the right hand sides of the last two identities are the above identities of Göllnitz-Gordon
history
- Andrews-Gordon identity
- Lebesgue identity
- (T1,Tn) q-hypergeometric series
- rank 2 case
- rank 2 continued fraction
computational resource
encyclopedia
books
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976
- Sec 7.4
expositions
articles
- Coulson, Bud, Shashank Kanade, James Lepowsky, Robert McRae, Fei Qi, Matthew C. Russell, and Christopher Sadowski. ‘A Motivated Proof of the G"ollnitz-Gordon-Andrews Identities’. arXiv:1411.2044 [math], 7 November 2014. http://arxiv.org/abs/1411.2044.
- Explicit evaluations of Ramanujan-Göllnitz-Gordon continued fraction
- Nayandeep Deka Baruah and Nipen Saikia, 2008
- Certain identities for Ramanujan–Göllnitz–Gordon continued fraction
- K.R. Vasuki, and B.R. Srivatsa Kumar, 2005
- On the Expansion of a Continued Fraction of Gordon
- Michael D. Hirschhorn, 2001
- On the Ramanujan-G¨ollnitz-Gordon Continued Fraction
- Heng Huat Chan and Sen-Shan Huang, 1997
- Partition identities and a continued fraction of Ramanujan
- Krishnaswami Alladi and Basil Gordon, 1993
- Partitionen mit Differenzenbedingungen
- H. Göllnitz, J. Reine Angew. Math. 225 (1967), 154–190.
- Basil Gordon Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. Volume 32, Number 4 (1965), 741-748.
- A Combinatorial Generalization of the Rogers-Ramanujan Identities
- Gordon, B. Amer. J. Math. 83, 393-399, 1961