리치 격자(Leech lattice)
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 04:41 판
개요
- 24차원 짝수 자기쌍대 격자의 하나로 root를 가지지 않는 유일한 격자
- 24차원의 Kissing number and sphere packings 에서 중요한 역할
구성
- \(\tilde{G}\subseteq \mathbb{F}_{2}^{24}\) 를 [24,12,8] 골레이 코드 (Golay code) 라 하자.
- quotient map \(\rho : \mathbb{Z}^{24}\to \mathbb{F}_{2}^{24}\) 으로부터 even unimodular lattice \(\Gamma\)를 얻는다.
\[\Gamma:=\frac{1}{\sqrt{2}}\rho^{-1}(\tilde{G})\]
- homomorphism \(\alpha : \Gamma \to \mathbb{F}_{2}\) 를 다음과 같이 정의하자
\[\alpha(x)=\frac{1}{2}\sum_{i=1}^{24} x_i \pmod 2\]
- \(A=\alpha^{-1}(0)\) , \(N=\alpha^{-1}(1)\) 로 두면 \(\Gamma=A\cup N\)이다.
- 리치격자 \(\Lambda_{24}\)는 다음과 같이 얻어진다
\[\Lambda_{24}=\frac{1}{\sqrt{2}}\left(A\cup (\frac{\mathbf{1}}{2}+N)\right)\]
norm 4 벡터
- 196560개의 norm 4벡터를 세 가지 타입으로 나눌 수 있다.
- \((\pm1)^8 0^{16}\) 97152개
- \((\pm2)^2 0^{22}\) 1104개
- \((\pm\frac{1}{2})^{23} (\pm \frac{3}{2})^{1}\) 98304개
세타함수
- 세타함수는 다음과 같다
\[ \begin{align} \theta_{\Lambda_{24}}(\tau)&=E_{4}^3(\tau)-720\Delta(\tau) \\ &=1+196560 q^2+16773120 q^3+398034000 q^4+4629381120 q^5+\cdots \end{align} \] 여기서 \(q=e^{2\pi i \tau}\), \(E_{4}(\tau)\)는 아이젠슈타인 급수(Eisenstein series), \(\Delta(\tau)\)는 판별식 (discriminant) 함수
메모
- \(\Lambda_{24}\oplus U\) : unimodular hyperbolic lattice
- automorphism group - Conway's computation
- http://www.maths.qmul.ac.uk/~raw/talks_files/Leech.pdf
- http://www.math.lsa.umich.edu/~rlg/mathclubtalklattices21oct10d.pdf
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
관련도서
- Ebeling, Wolfgang. Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch. 3rd ed. 2013 edition. Wiesbaden: Springer Spektrum, 2012.
관련논문
- Hoehn, Gerald, and Geoffrey Mason. ‘The 290 Fixed-Point Sublattices of the Leech Lattice’. arXiv:1505.06420 [hep-Th], 24 May 2015. http://arxiv.org/abs/1505.06420.
- Nagaoka, Shoyu, and Sho Takemori. “Notes on Theta Series for Niemeier Lattices.” arXiv:1504.06715 [math], April 25, 2015. http://arxiv.org/abs/1504.06715.
- Nagaoka, Shoyu, and Sho Takemori. ‘On Theta Series Attached to the Leech Lattice’. arXiv:1412.7606 [math], 24 December 2014. http://arxiv.org/abs/1412.7606.
메타데이터
위키데이터
- ID : Q2510203
Spacy 패턴 목록
- [{'LOWER': 'leech'}, {'LEMMA': 'lattice'}]