로저스 다이로그 함수 (Rogers dilogarithm)

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 10월 17일 (수) 12:11 판
둘러보기로 가기 검색하러 가기

개요




정의

  • \(x\in (0,1)\)에서 로저스 다이로그 함수를 다음과 같이 정의
    \(L(x)=\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(y)}{1-y}dy\)
  • \((-\infty,0],[1,+\infty)\)를 제외한 복소평면으로 해석적확장됨
  • \(dL(x)=\frac{1}{2}[\log(y)d\log (1-y)-\log(1-y)d\log (y)]\)




함수의 그래프

  • \(x\in (0,1)\) 에서의 그래프

[1]

  • 함수 방정식을 이용한 확장

[2]




반사공식(오일러)

  • \(0\leq x \leq 1\) 일 때
    \(L(x)+L(1-x)=L(1)\)



5항 관계식

  • \(0\leq x,y\leq 1\) 일 때,
    \(L(x)+L(1-xy)+L(y)+L(\frac{1-y}{1-xy})+L\left( \frac{1-x}{1-xy}\right)=\frac{\pi^2}{2}\)


special values

\(L(0)=0\)

\(L(1)=\frac{\pi^2}{6}\)

\(L(-1)=-\frac{\pi^2}{12}\)

\(L(\frac{1}{2})=\frac{\pi^2}{12}\)

\(L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\)

\(L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\)



역사

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서