모든 자연수의 합과 리만제타함수

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 12월 24일 (목) 17:00 판
둘러보기로 가기 검색하러 가기
개여ㅛ

\(\zeta(-1)= -\frac{1}{12}\)

  •  다음과 같은 (물리적?) 해석이 가능

\(\sum_{n=1}^{\infty} n =1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12}\)

 

 

증명

리만 제타함수가 만족시키는 다음 함수방정식을 이용한다.

\(\zeta(s)=2(2\pi)^{s-1}\Gamma(1-s)\sin(\frac{\pi s}{2})\zeta(1-s)\)

여기에 \(s=-1\) 을 대입하면, 다음을 얻는다.

\(\zeta(-1)=2(2\pi)^2\Gamma(2)\sin(-\frac{\pi}{2})\zeta(2)=\frac{2}{4\pi^2}(-1)\frac{\pi^2}{6}=-\frac{1}{12}\)

 

물리학적(?) 증명

보조정리

\(1 - 2 + 3 - 4 + 5 - 6 + \cdots = \frac{1}{4}\)

(증명)
테일러정리에 의하면,

\(x-2x^2+3x^3-4x^4+\cdots=\frac{x}{(1+x)^2}\)

본래는 양변에 x=1을 넣는 것이 금지되어 있으나, 위에서 물리학이라고 했으므로 괜찮음.
그러므로,

\(1 - 2 + 3 - 4 + 5 - 6 + \cdots = \frac{1}{4}\)

(증명끝)

본론으로 돌아가서,

\(S=1 + 2 + 3 + 4 + 5 + 6 + \cdots\)

\(2S=2 + 4 + 6 + 8 + \cdots\)

\(4S =2 (2+4+6+8+\cdots)\)

그러므로,

\(1 - 2 + 3 - 4 + 5 - 6 + \cdots + 4S = 1 + 2 + 3 + 4 + 5 + 6 + \cdots= S\)

따라서,

\(-3S= 1 - 2 + 3 - 4 + 5 - 6 + \cdots =\frac{1}{4}\)

\(\sum_{n=1}^{\infty} n =1 + 2 + 3 + 4 + 5 + 6 + \cdots = -\frac{1}{12}\)

 

조금만 수정하면, 제대로 된 증명이 되도록 할 수 있음.

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상