무리수와 디오판투스 근사

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 7월 28일 (수) 14:13 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

디리클레 근사정리(Dirichlet's approximation theorem)

\(|\alpha-\frac{p}{q}|<\frac{1}{q^2}\)

는 무한히 많은 유리수 \(p/q\)에 의하여 만족된다.

  • 더 나아가 다음이 성립한다
     
    무리수 \(\alpha\) 에 대하여, 부등식
    \(|\frac{p}{q}-\alpha|<\frac{1}{\sqrt{5}{q^2}}\)
    는 무한히 많은 유리수\(p/q\) 에 의하여 만족된다. (하지만 여기서 \(\sqrt{5}\) 는 더 큰 수로 대체될 수 없다.)
  • 연분수 항목 참조

 

 

 

 

리우빌 정리

무리수이면서 차수가 d인 대수적수 \(\alpha\) 에 대하여, 적당한 상수 \(A>0\)가 존재하여, 모든 유리수 \(p/q\)에 대하여 다음 부등식이 만족된다. 

\( \vert \alpha - \frac{p}{q} \vert > \frac{A}{q^{d}}\)

 

 

Thue-Siegel-Roth 정리

주어진 \(\epsilon}>0\)에 대하여, 무리수이면서 대수적인수 \(\alpha\) 에 대하여, 부등식

\(\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{2 + \epsilon}}\)

의 유리수해 \(p/q\)는 유한하다

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그