가우스의 놀라운 정리(Theorema Egregium)
둘러보기로 가기
검색하러 가기
개요
- 학부 미분기하학에서 배우게 되는 중요한 정리 중의 하나
- 가우스 곡률은 곡면이 얼마나 휘어 있는가를 재는 양
- 이 가우스 곡률은 그 곡면의 거리와 각도를 재는 것으로 알수 있다는 정리
가우스 곡률
\[K = -\frac{1}{2\sqrt{EG}}\left(\frac{\partial}{\partial u}\frac{G_u}{\sqrt{EG}} + \frac{\partial}{\partial v}\frac{E_v}{\sqrt{EG}}\right)\]
지도제작에의 의미
- 구면의 아주 작은 부분이라고 할지라도 수학적으로 엄밀하게 거리와 각도가 모두 보존되도록 하는 평면지도를 그릴수 없다는 것을 의미함.
- 만약 이것이 가능하려면, 구면과 평면의 가우스 곡률이 같아야 함.
- 그러나 구면의 가우스 곡률은 언제나 양수이고, 평면의 가우스 곡률은 언제나 0 이다.
- 이것은 지도제작에 언제나 존재하게 되는 딜레마를 의미함.
- 지도를 제작한다면 원하는 성질을 얻는 대신, 무언가는 희생해야 한다는 것을 뜻함.
- 지도와 수학 항목 참조
역사
관련된 항목들
사전형태의 자료
노트
말뭉치
- A consequence of the Theorema Egregium is that the Earth cannot be displayed on a map without distortion.[1]
- Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss.[1]
- Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry (proved by Carl Friedrich Gauss in 1827) that concerns the curvature of surfaces.[2]
- As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling.[2]
- It follows from Theorema Egregium that under this bending the Gaussian curvature at any two corresponding points of the catenoid and helicoid is always the same.[2]
- An application of the Theorema Egregium is seen when a flat object is somewhat folded or bent along a line, creating rigidity in the perpendicular direction.[2]
- As Lanczos (1970) put it, `In view of his customary reticence, it was an exceptionally jubilant gesture to call one of his theorems “Theorema egregium”.[3]
- The Gaussian curvature is still 0 and Theorema Egregium still holds and the pizza toppings are still on the floor.[4]
- Theorema Egregium means Remarkable Theorem.[5]
- Gauss Theorema Egregium allows us to dene the Gauss curvature for any surface S just using the rst fundamental form.[5]
- Gauss (effectively) expressed the theorema egregium by saying that the Gaussian curvature at a point is given by where is the Riemann tensor, and and are an orthonormal basis for the tangent space.[6]
- Gauss's theorema egregium states that the Gaussian Curvature of a surface embedded in 3-space may be understood intrinsically to that surface.[7]
- Gauß (effectively) expressed the theorema egregium by saying that the Gaussian Curvature at a point is given by where is the Riemann Tensor, and and are an orthonormal basis for the Tangent Space.[7]
- This leads us to one of the major theorems in differential geometry, Gauss' Theorema Egregium.[8]
- At this point we introduce a lemma that will be useful in proving the Theorema Egregium.[8]
- Gauss's Theorema Egregium (Latin: "Remarkable Theorem") is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.[9]
- It follows from Theorema Egregium that the Gaussian curvature at the two points of the catenoid and helicoid corresponding to each other under this bending is the same.[9]
- Finally, this essay deals with a remarkable theorem in the theory of surfaces, Gauss Theorema Egregium.[10]
- The Theorema Egregium ('Remarkable Theorem') is an important theorem of Carl Friedrich Gauss concerning the curvature of surfaces.[11]
- A somewhat whimsical application of the Theorema Egregium is seen in a common pizza-eating strategy: A slice of pizza can be seen as a surface with constant Gaussian curvature 0.[11]
- We shall deduce the Theorema Egregium from two results which relate the first and second fundamental forms of a surface, and which have other important consequences.[12]
- Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces.[13]
- Theorema egregium ('det märkvärdiga teoremet') är ett matematiskt teorem av Carl Friedrich Gauss som innebär att Gausskrökningen bevaras vid en isometrisk avbildning.[13]
- For smooth surfaces, Gauss Theorema Egregium says that the Gaussian curvature can be calculated by using distances on S alone; it is independent of the embedding S R3.[14]
- however, statements of Gauss' Theorema Egregium can be replaced for statements concerning simple and useful connections between their intrinsic and extrinsic measures.[15]
- This is the most wonderful thing I learned this week (though I don’t truly understand it), from the Wikipedia article on Gauss’s Theorema Egregium (Remarkable Theorem) about the curvature of surfaces.[16]
소스
- ↑ 1.0 1.1 Simple English Wikipedia, the free encyclopedia
- ↑ 2.0 2.1 2.2 2.3 Theorema Egregium
- ↑ Gaussian Curvature: the Theorema Egregium
- ↑ Theorema Egregium and Pizza Eating
- ↑ 5.0 5.1 Durham university
- ↑ Gauss's Theorema Egregium -- from Wolfram MathWorld
- ↑ 7.0 7.1 Gauss's Theorema Egregium
- ↑ 8.0 8.1 @include course
- ↑ 9.0 9.1 Theorema Egregium
- ↑ Gauss Theorema Egregium
- ↑ 11.0 11.1 Theorema Egregium
- ↑ Gauss’ Theorema Egregium
- ↑ 13.0 13.1 Theorema Egregium in Swedish - English-Swedish Dictionary
- ↑ Polyhedral differential geometry
- ↑ 'GAUSS' THEOREMA EGREGIUM FOR TRIANGULATED SURFACES
- ↑ Miskatonic University Press
메타데이터
위키데이터
- ID : Q1048874
Spacy 패턴 목록
- [{'LOWER': 'theorema'}, {'LOWER': 'egregium'}]