"갈루아 이론 입문 5차방정식의 근의 공식은 왜 없을까"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
27번째 줄: 27번째 줄:
 
그러므로 네 개의 해는 다음과 같이 쓸 수 있다.
 
그러므로 네 개의 해는 다음과 같이 쓸 수 있다.
  
<math>\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)</math>
+
<math>\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)</math>
  
 
<math>\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)</math>
 
<math>\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)</math>
37번째 줄: 37번째 줄:
 
 
 
 
  
* [[갈루아 이론 (피)]]
+
* [[갈루아 이론]]
  
 
 
 
 

2009년 11월 1일 (일) 19:55 판

방정식 \(z^4+z^3+z^2+z^1+1=0\) 을 어떻게 풀 수 있을까?

이 방정식은 다음과 같이 풀수 있다.

양변을 \(z^2\)으로 나누면, \(z^2+z+1+\frac{1}{z}+\frac{1}{z^2}=0\) 을 얻게 된다.

\(y=z+\frac{1}{z}\) 로 치환하면, 원래의 방정식에서 다음 식을 얻을 수 있다.

\(z^2+z+1+\frac{1}{z}+\frac{1}{z^2}=(z+\frac{1}{z})^2+(z+\frac{1}{z})-1=y^2+y-1=0\)

 

방정식을 풀면,

\(y^2+y-1=0\)

\(y=\frac{-1\pm\sqrt{5}}{2}\)

 

\(y=z+\frac{1}{z}\) 로 치환하였으므로,  \(z^2-yz+1=0\)가 만족된다.

따라서 \(z=\frac{y\pm \sqrt{y^2-4}}{2}\)

 

그러므로 네 개의 해는 다음과 같이 쓸 수 있다.

\(\alpha_1=\frac{1}{4} \left(-1+\sqrt{5}+i \sqrt{10+2\sqrt{5}}\right)\)

\(\frac{1}{4} \left(-1+\sqrt{5}-i \sqrt{10+2\sqrt{5}}\right)\)

\(\frac{1}{4} \left(-1-\sqrt{5}+i \sqrt{10-2 \sqrt{5}}\right)\)

\(\frac{1}{4} \left(-1-\sqrt{5}-i \sqrt{10-2 \sqrt{5}}\right)\)

 

 

 

이 과정을 거의 같지만 약간만 다르게 다시 써보자.

복소수의 지식에 의하면 \(\zeta=e^{2\pi i \over 5}=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}\) 는 처음에 주어진 방정식 \(z^4+z^3+z^2+z^1+1=0\)의 해이다. 그리고 이 방정식의 네 해는 \(\zeta,\zeta^2,\zeta^3, \zeta^4\)로 주어짐을 안다.

이 방정식을 풀 때, 가장 중요한 아이디어는 \(y=z+\frac{1}{z}\) 로 치환하는 과정이었다.

 

이 치환을 통하면 우리는 \(y_1=\zeta+\zeta^4\) 를 새로운 하나의 수로 생각하고, \(y_2=\zeta^2+\zeta^3\)를 또 다른 하나의 수로 생각하는 셈이다.

그러면 \(y_1+y_2=\zeta^1+\zeta^4+\zeta^2+\zeta^3\)이므로 근과 계수와의 관계를 적용한다면, \(y_1+y_2=-1\) 를 얻는다.

그리고 \(\zeta^5=1\) 을 사용하면, \(y_1y_2=(\zeta^1+\zeta^4)(\zeta^2+\zeta^3)=\zeta^3+\zeta^4+\zeta^6+\zeta^7=\zeta^3+\zeta^4+\zeta^1+\zeta^2=-1\) 를 얻게 된다.

그러면 \(y_1\)과 \(y_2\)는 방정식 \(y^2+y-1=0\)의 해임을 알 수 있게 되는 것이다.

이렇게 해들을 가지고 지혜롭게 잘 섞어서 새로운 수 \(y_1=\zeta+\zeta^4\), \(y_2=\zeta^2+\zeta^3\) 를 만들면, 때때로 4차 방정식의 근들의 결합이 만족시키는 2차 방정식을 얻게 되고, 4차방정식을 2차방정식 두 번 푸는 문제로 바꿀 수 있게 된다.

한가지 흥미로운 사실을 지적하자면, 1과 4는 \(\{1,2,3,4\}\) 로 구성된 합동식 (모듈로 modulo 연산) 의 세계에서 제곱이고, 2와 3은 제곱이 아니라는 것이다.

\(1^2=1\pmod 5\)

\(2^2=4 \pmod 5\)

\(3^2=9=4 \pmod 5\)

\(4^2=16=1 \pmod 5\)

이 사실은 가우스와 순환소수와 함께 생각하면, 그의 수학이 어디에서 잉태되고 있었는지를 가늠케 해주는 것들인데, 이것은 다시 훗날의 이야기거리로 남겨두자.

 

 

아무튼 위에서의 생각을 좀더 확장시키면, 가우스가 정17각형이 작도가능함을 보였던 방법을 이해할 수 있게 된다.

 

16차방정식 \(z^{16}+z^{15}+\cdots+z+1=0\) 에 대하여 생각해 보자. 그러나 이제부터 자세한 설명은 생략한다!

\(\zeta=e^{2\pi i \over 17}=\cos\frac{2\pi}{17}+i\sin\frac{2\pi}{17}\)  로 두자. 이 값을 대수적으로 구하는 것이 목표이다.

  • \((3^1, 3^2,3^3, 3^4, 3^5, 3^7, 3^8, 3^9, 3^{10}, 3^{11}, 3^{12}, 3^{13}, 3^{14}, 3^{15}, 3^{16}) \equiv (3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4,12, 2, 6, 1) \pmod {17}\)
  • 이 순서대로 2로 나눈 나머지에 따라서 분류
    • \(A_0 = \zeta^{9} + \zeta^{13} + \zeta^{15} + \zeta^{16}+\zeta^{8} + \zeta^{4} + \zeta^{2} +\zeta^{1}\)
    • \(A_1 = \zeta^3 + \zeta^{10} + \zeta^{5} + \zeta^{11}+\zeta^{14} + \zeta^{7} + \zeta^{12} +\zeta^{6}\)
    • \(A_0+A_1= -1\), \(A_{0}A_{1} = -4\), \(A_0>A_1\)
    • \(A_0 = \frac{-1 + \sqrt{17}}{2}\) , \(A_1= \frac{-1 - \sqrt{17}}{2}\)
  • 이번에는 4로 나눈 나머지에 따라서 분류
    • \(B_0 = \zeta^{13}+ \zeta^{16}+ \zeta^4 + \zeta^1 \)
    • \(B_1= \zeta^3 + \zeta^5 + \zeta^{14} + \zeta^{12}\)
    • \(B_2= \zeta^9 + \zeta^{15} + \zeta^8 +\zeta^2\)
    • \(B_3 =\zeta^{10} + \zeta^{11} + \zeta^{7} +\zeta^{6}\)
    • \(B_0+B_2=A_0\), \(B_0B_2= -1\), \(B_0>0\)
    • \(B_0 = \frac{-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}}}{4}\), \(B_2 = \frac{-1 + \sqrt{17} - \sqrt{34 - 2\sqrt{17}}}{4}\)
    • \(B_1+B_3=A_1\), \(B_1B_3= -1\), \(B_{1}> 0\)
    • \(B_1 = \frac{-1 - \sqrt{17} + \sqrt{34 + 2\sqrt{17}}}{4}\), \(B_3 = \frac{-1 - \sqrt{17} - \sqrt{34 + 2\sqrt{17}}}{4}\)
  • 이번에는 8로 나눈 나머지에 따라서 분류
    • \(C_0= \zeta^{16}+ \zeta^1\), \(C_4= \zeta^{13} +\zeta^4\), \(C_0 > C_1\)
    • \(C_0+C_4=B_0\), \(C_0C_4=B_1\)
    • \(C_0= \frac{B_0+\sqrt{B_0^2-4B_1}}{2}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{8}\)
    • \(C_4= \frac{B_0 - \sqrt{B_0^2-4B_1}}{2}\)
  • 이제 마무리
    • \(\zeta =\frac{{C_0} + \sqrt{{C_0}^2 - 4}}{2}\)
    • \(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)

 

그러므로 정17각형은 작도가능하다!!

 

요약 : 어떤 방정식을 잘 풀 수 없는지 알기 전에, 풀 수 있는건 도대체 무엇이 있나 탐색하는 시간이었다. 그 예로, 방정식 \(z^4+z^3+z^2+z^1+1=0\)과 \(z^{16}+z^{15}+\cdots+z+1=0\)의 해를 어떻게 제곱근기호를 사용하여, 구체적으로 써 내려갈 수 있는지 살펴보았다. 그러기 위해서 우리는 방정식의 여러 해들을 지혜롭게(!) 결합시켜 얻은 새로운 수들이 만족시키는 새로운 방정식을 찾았다. 그러면 방정식의 차수는 낮아지고, 이 과정을 반복하면 방정식을 풀 수 있는 희망이 싹틀때도 있다.

그런데 도대체 우리는 왜 이 방정식들을 이렇게 잘 풀 수 있었을까? 이야기는 계속된다.