다중 제타 값

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 03:29 판
둘러보기로 가기 검색하러 가기

개요

  • 리만제타함수의 다변수 일반화 \(\zeta(s_1, \ldots, s_k)\)
  • \(s_i\) 가 양의 정수일 때, 오일러 합이라 불림
  • 정수론의 중요한 주제
  • 물리에서 산란 진폭 등의 계산에서 등장


정의

  • \(s_1>1, \cdots, s_k\)가 양의 정수라 하자
  • 다중 제타 값을 다음과 같이 정의

\[ \zeta(s_1, \ldots, s_k) : = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \frac{1}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{n_1 > n_2 > \cdots > n_k > 0} \ \prod_{i=1}^k \frac{1}{n_i^{s_i}}, \!\]

  • \(w=s_1+\cdots+s_k\)를 weight, \(k\)를 depth로 부른다

이중 제타

  • 오일러의 공식

\[\zeta(2,1)=\zeta(3)\]


여러 가지 관계식

double shuffle

정리

\(m,n>1\) 일 때, \[\zeta(m)\zeta(n)=\zeta(m,n)+\zeta(n,m)+\zeta(m+n)\]

증명

\[ \zeta(m)\zeta(n)=(\sum_{j}\frac{1}{j^{m}})(\sum_{k}\frac{1}{k^{n}})=\sum_{j>k}\frac{1}{j^mk^n}+\sum_{j=k}\frac{1}{j^mk^n}+\sum_{j<k}\frac{1}{j^mk^n} \]

오일러 분해 공식

  • \(r,s>1\) 일 때,

\[\zeta(r)\zeta(s)=\sum_{a=0}^{s-1}\binom{a+r-1}{a}\zeta(r+a,s-a)+\sum_{a=0}^{r-1}\binom{a+s-1}{a}\zeta(s+a,r-a)\]

\[ \zeta(2) \zeta(3)=\zeta(2,3)+3\zeta(3,2)+6 \zeta(4,1) \]

기타

  • 다음이 성립한다

\[ 2\zeta(n,1)=n \zeta(n+1)-\sum_{i=1}^{n-2}\zeta(n-i)\zeta(i+1) \]

\[ \begin{align} \zeta(2,1)&=\zeta(3) \\ 2\zeta(3,1)&=-\zeta(2)^2+3\zeta(4) \\ \zeta(4,1)&=2\zeta(5)-\zeta(2)\zeta(3) \\ 2\zeta(5,1)&=-\zeta(3)^2-2\zeta(2)\zeta(4)+5\zeta(6) \end{align} \]

다중 제타 값의 공간

  • 주어진 무게를 갖는 다중 제타 값이 이루는 유리수체 위에서 정의된 벡터 공간의 차원
  • \(\{a_n\}_{n=1}^{\infty}\)를 \(a_n = a_{n-2} + a_{n-3}\), \(a_0=1, a_1=a_2=0\).
  • 이를 파도반 수열이라 한다
  • 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897
  • Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals.

테이블

추측

주어진 무게 \(s\)의 다중 제타 값으로 생성되는 \(\mathbb{Q}\)-벡터 공간은 다음과 같은 기저를 갖는다 \begin{array}{c|c} s & \\ \hline 2 & \zeta_2 \\ 3 & \zeta_3 \\ 4 & \zeta_2^2 \\ 5 & \zeta_5,\zeta_2 \zeta_3 \\ 6 & \zeta_3^2,\zeta_2^3 \\ 7 & \zeta_7,\zeta_2 \zeta_5,\zeta_2^2 \zeta_3 \\ 8 & \zeta_{5,3},\zeta_3 \zeta_5,\zeta_2 \zeta_3^2,\zeta_2^4 \\ 9 & \zeta_9,\zeta_2 \zeta_7,\zeta_2^2 \zeta_5,\zeta_3^3,\zeta_2^3 \zeta_3 \\ 10 & \zeta_{7,3},\zeta_2 \zeta_{5,3},\zeta_3 \zeta_7,\zeta_5^2,\zeta_2 \zeta_3 \zeta_5,\zeta_2^2 \zeta_3^2,\zeta_2^5 \\ \end{array}

테이블

이중 제타 값

\[ \begin{array}{c|c|c} \zeta (2,1) & 1.2021 & \zeta (3) \\ \zeta (2,2) & 0.81174 & \frac{\pi ^4}{120} \\ \zeta (2,3) & 0.71157 & \frac{9 \zeta (5)}{2}-\frac{\pi ^2 \zeta (3)}{3} \\ \zeta (2,4) & 0.67452 & \frac{5 \pi ^6}{2268}-\zeta (3)^2 \\ \zeta (2,5) & 0.65875 & -\frac{\pi ^4 \zeta (3)}{45}+10 \zeta (7)-\frac{2 \pi ^2 \zeta (5)}{3} \\ \zeta (2,6) & 0.65157 & \frac{\pi ^8}{14175}-\zeta (6,2) \\ \zeta (2,7) & 0.64817 & -\frac{1}{945} 2 \pi ^6 \zeta (3)-\pi ^2 \zeta (7)+\frac{35 \zeta (9)}{2}-\frac{2 \pi ^4 \zeta (5)}{45} \\ \zeta (3,1) & 0.27058 & \frac{\pi ^4}{360} \\ \zeta (3,2) & 0.22881 & \frac{1}{2} \left(\pi ^2 \zeta (3)-11 \zeta (5)\right) \\ \zeta (3,3) & 0.21380 & \frac{\zeta (3)^2}{2}-\frac{\pi ^6}{1890} \\ \zeta (3,4) & 0.20751 & \frac{\pi ^4 \zeta (3)}{90}+\frac{5 \pi ^2 \zeta (5)}{3}-18 \zeta (7) \\ \zeta (3,5) & 0.20466 & -4 \zeta (3) \zeta (5)+\frac{5 \zeta (6,2)}{2}+\frac{41 \pi ^8}{75600} \\ \zeta (3,6) & 0.20332 & \frac{\pi ^6 \zeta (3)}{945}+\frac{\pi ^4 \zeta (5)}{15}+\frac{7 \pi ^2 \zeta (7)}{2}-\frac{85 \zeta (9)}{2} \\ \zeta (4,1) & 0.096551 & 2 \zeta (5)-\frac{\pi ^2 \zeta (3)}{6} \\ \zeta (4,2) & 0.088483 & \zeta (3)^2-\frac{4 \pi ^6}{2835} \\ \zeta (4,3) & 0.085160 & 17 \zeta (7)-\frac{5 \pi ^2 \zeta (5)}{3} \\ \zeta (4,4) & 0.083673 & \frac{\pi ^8}{113400} \\ \zeta (4,5) & 0.082978 & \frac{1}{90} \left(-4 \pi ^4 \zeta (5)-525 \pi ^2 \zeta (7)+5625 \zeta (9)\right) \\ \zeta (5,1) & 0.040537 & \frac{\pi ^6-630 \zeta (3)^2}{1260} \\ \zeta (5,2) & 0.038575 & \frac{\pi ^4 \zeta (3)}{45}+\frac{5 \pi ^2 \zeta (5)}{6}-11 \zeta (7) \\ \zeta (5,3) & 0.037708 & 5 \zeta (3) \zeta (5)-\frac{5 \zeta (6,2)}{2}-\frac{7 \pi ^8}{10800} \\ \zeta (5,4) & 0.037305 & \frac{1}{18} \left(\pi ^4 \zeta (5)+105 \pi ^2 \zeta (7)-1143 \zeta (9)\right) \\ \zeta (6,1) & 0.018356 & -\frac{\pi ^4 \zeta (3)}{90}+3 \zeta (7)-\frac{\pi ^2 \zeta (5)}{6} \\ \zeta (6,2) & 0.017820 & \zeta (6,2) \\ \zeta (6,3) & 0.017573 & -\frac{\pi ^4 \zeta (5)}{15}+\frac{83 \zeta (9)}{2}-\frac{7 \pi ^2 \zeta (7)}{2} \\ \end{array} \]

메모

관련된 항목들


계산 리소스

사전 형태의 자료


리뷰, 에세이, 강의노트

관련논문

  • Masanobu Kaneko, Shuji Yamamoto, A new integral-series identity of multiple zeta values and regularizations, arXiv:1605.03117 [math.NT], May 10 2016, http://arxiv.org/abs/1605.03117
  • Benjamin Enriquez, Hidekazu Furusho, A stabilizer interpretation of double shuffle Lie algebras, arXiv:1605.02838 [math.QA], May 10 2016, http://arxiv.org/abs/1605.02838
  • Johannes Broedel, Nils Matthes, Oliver Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, arXiv:1507.02254 [hep-th], July 08 2015, http://arxiv.org/abs/1507.02254, 10.1088/1751-8113/49/15/155203, http://dx.doi.org/10.1088/1751-8113/49/15/155203, J.Phys. A49 (2016) 155203
  • Zhonghua Li, Chen Qin, Stuffle product formulas of multiple zeta values, arXiv:1603.08332[math.NT], March 28 2016, http://arxiv.org/abs/1603.08332v1
  • Zhonghua Li, Chen Qin, Shuffle product formulas of multiple zeta values, http://arxiv.org/abs/1603.05786v1
  • Michael E. Hoffman, On Multiple Zeta Values of Even Arguments, http://arxiv.org/abs/1205.7051v3
  • Ding Ma, Koji Tasaka, On triple zeta values of even weight and their connections with period polynomials, http://arxiv.org/abs/1603.01013v1
  • Vieru, Andrei. “Analytic Renormalization of Multiple Zeta Functions. Geometry and Combinatorics of Generalized Euler Reflection Formula for MZV.” arXiv:1601.04703 [math], January 18, 2016. http://arxiv.org/abs/1601.04703.
  • Jarossay, David. “Depth Reductions for Associators.” arXiv:1601.01161 [math], January 6, 2016. http://arxiv.org/abs/1601.01161.
  • Murahara, Hideki. “Derivation Relations for Finite Multiple Zeta Values.” arXiv:1512.08696 [math], December 29, 2015. http://arxiv.org/abs/1512.08696.
  • Ebrahimi-Fard, Kurusch, Dominique Manchon, and Johannes Singer. “Duality and (q-)multiple Zeta Values.” arXiv:1512.00753 [math], December 2, 2015. http://arxiv.org/abs/1512.00753.
  • Zerbini, Federico. “Single-Valued Multiple Zeta Values in Genus 1 Superstring Amplitudes.” arXiv:1512.05689 [hep-Th], December 17, 2015. http://arxiv.org/abs/1512.05689.
  • Panzer, Erik. “The Parity Theorem for Multiple Polylogarithms.” arXiv:1512.04482 [math], December 14, 2015. http://arxiv.org/abs/1512.04482.
  • Singer, Johannes, and Jianqiang Zhao. “Finite and Symmetrized Colored Multiple Zeta Values.” arXiv:1512.03691 [math], December 11, 2015. http://arxiv.org/abs/1512.03691.
  • Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Renormalisation Group for Multiple Zeta Values.” arXiv:1511.06720 [math], November 20, 2015. http://arxiv.org/abs/1511.06720.
  • Ma, Ding. “Connections between Double Zeta Values Relative to \(\mu_N\), Hecke Operators \(T_N\), and Newforms of Level \(\Gamma_0(N)\) for \(N=2,3\).” arXiv:1511.06102 [math], November 19, 2015. http://arxiv.org/abs/1511.06102.
  • Ebrahimi-Fard, Kurusch, Dominique Manchon, Johannes Singer, and Jianqiang Zhao. “Transfer Group for Renormalized Multiple Zeta Values.” arXiv:1510.09159 [math], October 30, 2015. http://arxiv.org/abs/1510.09159.
  • Chang, Chieh-Yu. “Linear Relations among Double Zeta Values in Positive Characteristic.” arXiv:1510.06519 [math], October 22, 2015. http://arxiv.org/abs/1510.06519.
  • Dotzel, Michael, and Ivan Horozov. “Shuffle Product for Multiple Dedekind Zeta Values over Imaginary Quadratic Fields.” arXiv:1509.08400 [math], September 28, 2015. http://arxiv.org/abs/1509.08400.
  • Matthes, Nils. “Elliptic Double Zeta Values.” arXiv:1509.08760 [math], September 29, 2015. http://arxiv.org/abs/1509.08760.
  • Furusho, Hidekazu, Yasushi Komori, Kohji Matsumoto, and Hirofumi Tsumura. “Desingularization of Complex Multiple Zeta-Functions.” arXiv:1508.06920 [math], August 27, 2015. http://arxiv.org/abs/1508.06920.
  • Broedel, Johannes, Nils Matthes, and Oliver Schlotterer. ‘Relations between Elliptic Multiple Zeta Values and a Special Derivation Algebra’. arXiv:1507.02254 [hep-Th], 8 July 2015. http://arxiv.org/abs/1507.02254.
  • Oyama, Kojiro. ‘Ohno’s Relation for Finite Multiple Zeta Values’. arXiv:1506.00833 [math], 2 June 2015. http://arxiv.org/abs/1506.00833.
  • Kaneko, Masanobu, and Mika Sakata. ‘On Multiple Zeta Values of Extremal Height’. arXiv:1505.01014 [math], 5 May 2015. http://arxiv.org/abs/1505.01014.
  • Zudilin, Wadim. ‘On a Family of Polynomials Related to \(\zeta(2,1)=\zeta(3)\)’. arXiv:1504.07696 [math-Ph], 28 April 2015. http://arxiv.org/abs/1504.07696.
  • Furusho, Hidekazu. “On Relations among Multiple Zeta Values Obtained in Knot Theory.” arXiv:1501.06638 [math], January 26, 2015. http://arxiv.org/abs/1501.06638.
  • Brown, Francis. “Multiple Modular Values for SL_2(Z).” arXiv:1407.5167 [math], July 19, 2014. http://arxiv.org/abs/1407.5167.
  • Zhao, Jianqiang. “Uniform Approach to Double Shuffle and Duality Relations of Various Q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras.” arXiv:1412.8044 [math], December 27, 2014. http://arxiv.org/abs/1412.8044.
  • Zagier, Don. ‘Evaluation of the Multiple Zeta Values zeta(2,...,2,3,2,...,2)’. Annals of Mathematics 175, no. 2 (1 March 2012): 977–1000. doi:10.4007/annals.2012.175.2.11.
  • Blümlein, J., D. J. Broadhurst, and J. A. M. Vermaseren. ‘The Multiple Zeta Value Data Mine’. Computer Physics Communications 181, no. 3 (March 2010): 582–625. doi:10.1016/j.cpc.2009.11.007.
  • Guo, Li, and Bin Zhang. ‘Renormalization of Multiple Zeta Values’. Journal of Algebra 319, no. 9 (1 May 2008): 3770–3809. doi:10.1016/j.jalgebra.2008.02.003.
  • Ihara, Kentaro, Masanobu Kaneko, and Don Zagier. ‘Derivation and Double Shuffle Relations for Multiple Zeta Values’. Compositio Mathematica 142, no. 02 (March 2006): 307–38. doi:10.1112/S0010437X0500182X.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'multiple'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]