"데데킨트 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 14개는 보이지 않습니다)
21번째 줄: 21번째 줄:
  
 
==코탄젠트합으로서의 표현==
 
==코탄젠트합으로서의 표현==
 
+
*  서로 소인 두 정수<math>h,k\,(k>0)</math>에 대하여 다음 등식이 성립함
*  서로 소인 두 정수<math>b,c\,(c>0)</math>에 대하여 다음 등식이 성립함:<math>s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1}  \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)</math>
+
:<math>
 +
s(h,k)=\frac{1}{4k}\sum_{n=1}^{k-1}  \cot \left( \frac{\pi n}{k} \right) \cot \left( \frac{\pi nh}{k} \right)
 +
</math>
  
 
   
 
   
30번째 줄: 32번째 줄:
 
==상호법칙==
 
==상호법칙==
  
*  (정리) 데데킨트 서로 소인 양의 정수 <math>d</math>와 <math>c</math>에 대하여 다음이 성립한다.:<math>s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}</math>
+
*  (정리) 데데킨트 서로 소인 양의 정수 <math>c</math>와 <math>d</math>에 대하여 다음이 성립한다
 +
:<math>s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}</math>
  
 
   
 
   
73번째 줄: 76번째 줄:
  
 
==일반화==
 
==일반화==
 
+
* <math>p\geq 1</math>이고, <math>q,r</math>은 <math>p</math>와 서로 소인 정수
<math>D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right)  \left( \left( \frac{bn}{c} \right) \right)</math>
+
:<math>
 
+
\begin{align}
+
S(p;q,r)&=\sum_{k=1}^{p-1}\left( \left( \frac{qk}{p} \right) \right)  \left( \left( \frac{rk}{p} \right) \right) \\
 +
&=\frac{1}{4p}\sum_{k=1}^{p-1} \cot \left( \frac{\pi qk}{p} \right) \cot \left( \frac{\pi rk}{p} \right)
 +
\end{align}
 +
</math>
 +
* 라데마커 상호법칙 : 서로 소인 정수 <math>p,q,r\geq 1</math>에 대하여, 다음이 성립한다
 +
:<math>
 +
S(p;q,r)+S(q;r,p)+S(r;p,q)=\frac{ \left(p^2+q^2+r^2-3 p q r\right)}{12 p q r}
 +
</math>
 +
* [[마르코프 수]]
  
 
   
 
   
  
==h,k가 작은 경우 데데킨트합의 목록==
+
==h,k가 작은 경우 데데킨트합의 목록==  
$$
+
:<math>
\begin{array}{c|c|c}
+
\begin{array}{c|c|c|c|c|c}
  h & k & s(h,k) \\
+
  h & k & s(h,k) & s(k,h) & s(h,k)+s(k,h) & \frac{1}{12}\left(\frac{k}{h}+\frac{h}{k}+\frac{1}{h k}\right)-\frac{1}{4} \\
 
\hline
 
\hline
  1 & 1 & 0 \\
+
  1 & 1 & 0 & 0 & 0 & 0 \\
  1 & 2 & 0 \\
+
  1 & 2 & 0 & 0 & 0 & 0 \\
  1 & 3 & \frac{1}{18} \\
+
  1 & 3 & \frac{1}{18} & 0 & \frac{1}{18} & \frac{1}{18} \\
  2 & 3 & -\frac{1}{18} \\
+
  2 & 3 & -\frac{1}{18} & 0 & -\frac{1}{18} & -\frac{1}{18} \\
  1 & 4 & \frac{1}{8} \\
+
  1 & 4 & \frac{1}{8} & 0 & \frac{1}{8} & \frac{1}{8} \\
  3 & 4 & -\frac{1}{8} \\
+
  3 & 4 & -\frac{1}{8} & \frac{1}{18} & -\frac{5}{72} & -\frac{5}{72} \\
  1 & 5 & \frac{1}{5} \\
+
  1 & 5 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} \\
  2 & 5 & 0 \\
+
  2 & 5 & 0 & 0 & 0 & 0 \\
  3 & 5 & 0 \\
+
  3 & 5 & 0 & -\frac{1}{18} & -\frac{1}{18} & -\frac{1}{18} \\
  4 & 5 & -\frac{1}{5} \\
+
  4 & 5 & -\frac{1}{5} & \frac{1}{8} & -\frac{3}{40} & -\frac{3}{40} \\
  1 & 6 & \frac{5}{18} \\
+
  1 & 6 & \frac{5}{18} & 0 & \frac{5}{18} & \frac{5}{18} \\
  5 & 6 & -\frac{5}{18} \\
+
  5 & 6 & -\frac{5}{18} & \frac{1}{5} & -\frac{7}{90} & -\frac{7}{90} \\
  1 & 7 & \frac{5}{14} \\
+
  1 & 7 & \frac{5}{14} & 0 & \frac{5}{14} & \frac{5}{14} \\
  2 & 7 & \frac{1}{14} \\
+
  2 & 7 & \frac{1}{14} & 0 & \frac{1}{14} & \frac{1}{14} \\
  3 & 7 & -\frac{1}{14} \\
+
  3 & 7 & -\frac{1}{14} & \frac{1}{18} & -\frac{1}{63} & -\frac{1}{63} \\
  4 & 7 & \frac{1}{14} \\
+
  4 & 7 & \frac{1}{14} & -\frac{1}{8} & -\frac{3}{56} & -\frac{3}{56} \\
  5 & 7 & -\frac{1}{14} \\
+
  5 & 7 & -\frac{1}{14} & 0 & -\frac{1}{14} & -\frac{1}{14} \\
  6 & 7 & -\frac{5}{14} \\
+
  6 & 7 & -\frac{5}{14} & \frac{5}{18} & -\frac{5}{63} & -\frac{5}{63} \\
  1 & 8 & \frac{7}{16} \\
+
  1 & 8 & \frac{7}{16} & 0 & \frac{7}{16} & \frac{7}{16} \\
  3 & 8 & \frac{1}{16} \\
+
  3 & 8 & \frac{1}{16} & -\frac{1}{18} & \frac{1}{144} & \frac{1}{144} \\
  5 & 8 & -\frac{1}{16} \\
+
  5 & 8 & -\frac{1}{16} & 0 & -\frac{1}{16} & -\frac{1}{16} \\
  7 & 8 & -\frac{7}{16} \\
+
  7 & 8 & -\frac{7}{16} & \frac{5}{14} & -\frac{9}{112} & -\frac{9}{112} \\
  1 & 9 & \frac{14}{27} \\
+
  1 & 9 & \frac{14}{27} & 0 & \frac{14}{27} & \frac{14}{27} \\
  2 & 9 & \frac{4}{27} \\
+
  2 & 9 & \frac{4}{27} & 0 & \frac{4}{27} & \frac{4}{27} \\
  4 & 9 & -\frac{4}{27} \\
+
  4 & 9 & -\frac{4}{27} & \frac{1}{8} & -\frac{5}{216} & -\frac{5}{216} \\
  5 & 9 & \frac{4}{27} \\
+
  5 & 9 & \frac{4}{27} & -\frac{1}{5} & -\frac{7}{135} & -\frac{7}{135} \\
  7 & 9 & -\frac{4}{27} \\
+
  7 & 9 & -\frac{4}{27} & \frac{1}{14} & -\frac{29}{378} & -\frac{29}{378} \\
  8 & 9 & -\frac{14}{27} \\
+
  8 & 9 & -\frac{14}{27} & \frac{7}{16} & -\frac{35}{432} & -\frac{35}{432} \\
  1 & 10 & \frac{3}{5} \\
+
  1 & 10 & \frac{3}{5} & 0 & \frac{3}{5} & \frac{3}{5} \\
  3 & 10 & 0 \\
+
  3 & 10 & 0 & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\
  7 & 10 & 0 \\
+
  7 & 10 & 0 & -\frac{1}{14} & -\frac{1}{14} & -\frac{1}{14} \\
  9 & 10 & -\frac{3}{5} \\
+
  9 & 10 & -\frac{3}{5} & \frac{14}{27} & -\frac{11}{135} & -\frac{11}{135} \\
 
\end{array}
 
\end{array}
$$
+
</math>
 
  
 
  
 
==역사==
 
==역사==
155번째 줄: 164번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Dedekind_sum
 
* http://en.wikipedia.org/wiki/Dedekind_sum
* http://en.wikipedia.org/wiki/
 
 
* http://mathworld.wolfram.com/DedekindSum.html
 
* http://mathworld.wolfram.com/DedekindSum.html
  
 
   
 
   
 
 
   
 
   
  
 
==관련도서==
 
==관련도서==
  
* [http://math.sfsu.edu/beck/ccd.html Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra]
+
* Matthias Beck and Sinai Robins [http://math.sfsu.edu/beck/ccd.html Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra], Springer, 2007
**  Matthias Beck and Sinai Robins, Springer, 2007
+
* H. Rademacher and E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs
* Dedekind Sums, The Carus Mathematical Monographs
 
**  H. Rademacher and E. Grosswald
 
  
  
 
   
 
   
 +
 +
==리뷰, 에세이, 강의노트==
 +
* Grosswald, Emil. ‘Dedekind-Rademacher Sums’. The American Mathematical Monthly 78, no. 6 (1 June 1971): 639–44. doi:10.2307/2316571.
 +
  
 
==관련논문==
 
==관련논문==
 +
* Genki Shibukawa, New trigonometric identities and reciprocity laws of generalized Dedekind sums, http://arxiv.org/abs/1409.2451v4
 +
* Rassias, Michael Th, and László Tóth. “Trigonometric Representations of Generalized Dedekind and Hardy Sums via the Discrete Fourier Transform.” arXiv:1512.01466 [math], December 4, 2015. http://arxiv.org/abs/1512.01466.
 +
* Rassias, Michael Th. “A Cotangent Sum Related to Zeros of the Estermann Zeta Function.” arXiv:1512.04711 [math], December 15, 2015. http://arxiv.org/abs/1512.04711.
 +
* Burrin, Claire. “Generalized Dedekind Sums and Equidistribution Mod 1.” arXiv:1509.04429 [math], September 15, 2015. http://arxiv.org/abs/1509.04429.
 +
* Dowker, J. S. “On Sums of Powers of Cosecs.” arXiv:1507.01848 [hep-Th], July 7, 2015. http://arxiv.org/abs/1507.01848.
 +
* Tsukerman, Emmanuel. “A Generalization of Zolotarev’s Lemma and Equality of Dedekind Sums Mod <math>8 \mathbb{Z}</math>.” arXiv:1501.03544 [math], January 14, 2015. http://arxiv.org/abs/1501.03544.
 +
* Maier, Helmut, and Michael Th Rassias. “The Order of Magnitude for Moments for Certain Cotangent Sums.” arXiv:1412.1512 [math], December 3, 2014. http://arxiv.org/abs/1412.1512.
 +
* Shibukawa, Genki. “New Trigonometric Identities and Reciprocity Laws of Generalized Dedekind Sums.” arXiv:1409.2451 [math], September 8, 2014. http://arxiv.org/abs/1409.2451.
 +
* Beck, Matthias. ‘Dedekind Cotangent Sums’. arXiv:math/0112077, 7 December 2001. http://arxiv.org/abs/math/0112077.
 +
* Gunnells, Paul E., and Robert Sczech. ‘Evaluation of Dedekind Sums, Eisenstein Cocycles, and Special Values of L-Functions’. Duke Mathematical Journal 118, no. 2 (1 June 2003): 229–60. doi:10.1215/S0012-7094-03-11822-0.
 +
* Asai, Tetsuya. ‘The Reciprocity of Dedekind Sums and the Factor Set for the Universal Covering Group of <math>{\rm SL}(2,\,R)</math>’. Nagoya Mathematical Journal 37 (1970): 67–80. http://projecteuclid.org/euclid.nmj/1118797877
  
* [http://arxiv.org/abs/math.NT/0112077 Dedekind cotangent sums]
 
** Matthias Beck, Acta Arithmetica 109, no.2 (2003), 109-130 
 
* [http://www.jstor.org/stable/2316571?&Search=yes&term=Emil&term=Grosswald,&term=,&term=%22Dedekind-Rademacher+sums%22&list=hide&searchUri=/action/doBasicSearch%3FQuery%3DEmil%2BGrosswald%252C%2B%2522%2BDedekind-Rademacher%2Bsums%2B%2522%252C%26x%3D0%26y%3D0%26wc%3Don&item=1&ttl=3&returnArticleService=showArticle Dedekind-Rademacher Sums]
 
** Emil Grosswald, The American Mathematical Monthly, Vol. 78, No. 6 (Jun. - Jul., 1971), pp. 639-644
 
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.nmj/1118797877&page=record The reciprocity of Dedekind sums and the factor set for the universal covering group of] <math>{\rm SL}(2,\,R)</math>
 
** Tetsuya Asai, Source: Nagoya Math. J. Volume 37 (1970), 67-80.
 
  
 +
[[분류:정수론]]
  
[[분류:정수론]]
+
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2463775 Q2463775]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'dedekind'}, {'LEMMA': 'sum'}]

2021년 2월 17일 (수) 05:02 기준 최신판

개요



정의

  • 다음과 같이 sawtooth 함수를 정의하자\[\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\]

여기서 \(\lfloor x\rfloor\)는 \(x\)이하의 최대정수함수 (가우스함수)

  • 그래프는 다음과 같다

데데킨트 합1.png

  • 예\[((0.8))=0.8-0-0.5=0.3\]\[((-0.2))=-0.2-(-1)-0.5=0.3\]
  • 서로 소인 두 정수\(h, k\,(k>0)\)에 대하여 데데킨트 합 \(s(h,k)\)은 다음과 같이 정의됨\[s(h,k)=\sum_{n\mod k} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\]\[s(h,k)=\sum_{n=1}^{k-1} \frac{n}{k} \left( \left( \frac{hn}{k} \right) \right)\]



코탄젠트합으로서의 표현

  • 서로 소인 두 정수\(h,k\,(k>0)\)에 대하여 다음 등식이 성립함

\[ s(h,k)=\frac{1}{4k}\sum_{n=1}^{k-1} \cot \left( \frac{\pi n}{k} \right) \cot \left( \frac{\pi nh}{k} \right) \]



상호법칙

  • (정리) 데데킨트 서로 소인 양의 정수 \(c\)와 \(d\)에 대하여 다음이 성립한다

\[s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}\]


(증명)

\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz\)

네 점 \(\pm iM, 1+\pm iM\)을 꼭지점으로 갖는 사각형을 조금 수정하여 0은 포함하고, 1은 빠지도록 하는 폐곡선 \(\Gamma\)에 대한 적분을 사용한다.

\(\lim_{M\to \infty}\cot (x+iM)=-i\)이므로, \(\lim_{M\to \infty}F(x+iM)=-i\) 임을 확인하자.

\(\int_{\Gamma}F(z)dz\) 는 \(M\)에 의존하지 않으므로, \(\int_{\Gamma}F(z)dz = \lim_{M\to\infty}\int_{\Gamma}F(z)dz=-2i\)을 얻는다.

따라서 \(\Gamma\) 내부에 있는 유수의 합 \(S\)는 \(-\frac{1}{\pi}\) 가 된다.


폴은 다음과 같은 점에서 발생한다.

  • \(z=0\)
  • \(z=\lambda/c\,, \lambda=1,2,\cdots, c-1\)
  • \(z=\mu/d\,, \mu=1,2,\cdots, d-1\)

\(z=\lambda/c\) 에서의 유수는 \(\frac{1}{\pi c}\cot \frac{\pi \lambda}{c}\cot\frac{\pi d\lambda}{c}\)

\(z=\mu/c\) 에서의 유수는 \(\frac{1}{\pi d}\cot \frac{\pi \mu}{d}\cot\frac{\pi c\mu}{d}\)


코탄젠트의 급수전개를 사용하여 \(z=0\)에서의 유수를 구하자. \[F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz =\frac{1}{\pi^3 cd z^3}(1-\frac{\pi^2z^2}{3}-\cdots)(1-\frac{\pi^2z^2d^2}{3}-\cdots)(1-\frac{\pi^2z^2c^2}{3}-\cdots)\]

따라서 \(z=0\)에서의 유수는 \(-\frac{1}{3\pi}\left(\frac{d}{c}+\frac{1}{cd}+\frac{c}{d}\right)\) 이다.


\(S=\frac{4}{\pi}[-\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)+s(d,c)+s(c,d)]=-\frac{1}{\pi}\) 를 얻는다. ■



일반화

  • \(p\geq 1\)이고, \(q,r\)은 \(p\)와 서로 소인 정수

\[ \begin{align} S(p;q,r)&=\sum_{k=1}^{p-1}\left( \left( \frac{qk}{p} \right) \right) \left( \left( \frac{rk}{p} \right) \right) \\ &=\frac{1}{4p}\sum_{k=1}^{p-1} \cot \left( \frac{\pi qk}{p} \right) \cot \left( \frac{\pi rk}{p} \right) \end{align} \]

  • 라데마커 상호법칙 : 서로 소인 정수 \(p,q,r\geq 1\)에 대하여, 다음이 성립한다

\[ S(p;q,r)+S(q;r,p)+S(r;p,q)=\frac{ \left(p^2+q^2+r^2-3 p q r\right)}{12 p q r} \]


h,k가 작은 경우 데데킨트합의 목록

\[ \begin{array}{c|c|c|c|c|c} h & k & s(h,k) & s(k,h) & s(h,k)+s(k,h) & \frac{1}{12}\left(\frac{k}{h}+\frac{h}{k}+\frac{1}{h k}\right)-\frac{1}{4} \\ \hline 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 3 & \frac{1}{18} & 0 & \frac{1}{18} & \frac{1}{18} \\ 2 & 3 & -\frac{1}{18} & 0 & -\frac{1}{18} & -\frac{1}{18} \\ 1 & 4 & \frac{1}{8} & 0 & \frac{1}{8} & \frac{1}{8} \\ 3 & 4 & -\frac{1}{8} & \frac{1}{18} & -\frac{5}{72} & -\frac{5}{72} \\ 1 & 5 & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} \\ 2 & 5 & 0 & 0 & 0 & 0 \\ 3 & 5 & 0 & -\frac{1}{18} & -\frac{1}{18} & -\frac{1}{18} \\ 4 & 5 & -\frac{1}{5} & \frac{1}{8} & -\frac{3}{40} & -\frac{3}{40} \\ 1 & 6 & \frac{5}{18} & 0 & \frac{5}{18} & \frac{5}{18} \\ 5 & 6 & -\frac{5}{18} & \frac{1}{5} & -\frac{7}{90} & -\frac{7}{90} \\ 1 & 7 & \frac{5}{14} & 0 & \frac{5}{14} & \frac{5}{14} \\ 2 & 7 & \frac{1}{14} & 0 & \frac{1}{14} & \frac{1}{14} \\ 3 & 7 & -\frac{1}{14} & \frac{1}{18} & -\frac{1}{63} & -\frac{1}{63} \\ 4 & 7 & \frac{1}{14} & -\frac{1}{8} & -\frac{3}{56} & -\frac{3}{56} \\ 5 & 7 & -\frac{1}{14} & 0 & -\frac{1}{14} & -\frac{1}{14} \\ 6 & 7 & -\frac{5}{14} & \frac{5}{18} & -\frac{5}{63} & -\frac{5}{63} \\ 1 & 8 & \frac{7}{16} & 0 & \frac{7}{16} & \frac{7}{16} \\ 3 & 8 & \frac{1}{16} & -\frac{1}{18} & \frac{1}{144} & \frac{1}{144} \\ 5 & 8 & -\frac{1}{16} & 0 & -\frac{1}{16} & -\frac{1}{16} \\ 7 & 8 & -\frac{7}{16} & \frac{5}{14} & -\frac{9}{112} & -\frac{9}{112} \\ 1 & 9 & \frac{14}{27} & 0 & \frac{14}{27} & \frac{14}{27} \\ 2 & 9 & \frac{4}{27} & 0 & \frac{4}{27} & \frac{4}{27} \\ 4 & 9 & -\frac{4}{27} & \frac{1}{8} & -\frac{5}{216} & -\frac{5}{216} \\ 5 & 9 & \frac{4}{27} & -\frac{1}{5} & -\frac{7}{135} & -\frac{7}{135} \\ 7 & 9 & -\frac{4}{27} & \frac{1}{14} & -\frac{29}{378} & -\frac{29}{378} \\ 8 & 9 & -\frac{14}{27} & \frac{7}{16} & -\frac{35}{432} & -\frac{35}{432} \\ 1 & 10 & \frac{3}{5} & 0 & \frac{3}{5} & \frac{3}{5} \\ 3 & 10 & 0 & \frac{1}{18} & \frac{1}{18} & \frac{1}{18} \\ 7 & 10 & 0 & -\frac{1}{14} & -\frac{1}{14} & -\frac{1}{14} \\ 9 & 10 & -\frac{3}{5} & \frac{14}{27} & -\frac{11}{135} & -\frac{11}{135} \\ \end{array} \]


역사



관련된 항목들




매스매티카 파일 및 계산 리소스



사전 형태의 자료



관련도서



리뷰, 에세이, 강의노트

  • Grosswald, Emil. ‘Dedekind-Rademacher Sums’. The American Mathematical Monthly 78, no. 6 (1 June 1971): 639–44. doi:10.2307/2316571.


관련논문

  • Genki Shibukawa, New trigonometric identities and reciprocity laws of generalized Dedekind sums, http://arxiv.org/abs/1409.2451v4
  • Rassias, Michael Th, and László Tóth. “Trigonometric Representations of Generalized Dedekind and Hardy Sums via the Discrete Fourier Transform.” arXiv:1512.01466 [math], December 4, 2015. http://arxiv.org/abs/1512.01466.
  • Rassias, Michael Th. “A Cotangent Sum Related to Zeros of the Estermann Zeta Function.” arXiv:1512.04711 [math], December 15, 2015. http://arxiv.org/abs/1512.04711.
  • Burrin, Claire. “Generalized Dedekind Sums and Equidistribution Mod 1.” arXiv:1509.04429 [math], September 15, 2015. http://arxiv.org/abs/1509.04429.
  • Dowker, J. S. “On Sums of Powers of Cosecs.” arXiv:1507.01848 [hep-Th], July 7, 2015. http://arxiv.org/abs/1507.01848.
  • Tsukerman, Emmanuel. “A Generalization of Zolotarev’s Lemma and Equality of Dedekind Sums Mod \(8 \mathbb{Z}\).” arXiv:1501.03544 [math], January 14, 2015. http://arxiv.org/abs/1501.03544.
  • Maier, Helmut, and Michael Th Rassias. “The Order of Magnitude for Moments for Certain Cotangent Sums.” arXiv:1412.1512 [math], December 3, 2014. http://arxiv.org/abs/1412.1512.
  • Shibukawa, Genki. “New Trigonometric Identities and Reciprocity Laws of Generalized Dedekind Sums.” arXiv:1409.2451 [math], September 8, 2014. http://arxiv.org/abs/1409.2451.
  • Beck, Matthias. ‘Dedekind Cotangent Sums’. arXiv:math/0112077, 7 December 2001. http://arxiv.org/abs/math/0112077.
  • Gunnells, Paul E., and Robert Sczech. ‘Evaluation of Dedekind Sums, Eisenstein Cocycles, and Special Values of L-Functions’. Duke Mathematical Journal 118, no. 2 (1 June 2003): 229–60. doi:10.1215/S0012-7094-03-11822-0.
  • Asai, Tetsuya. ‘The Reciprocity of Dedekind Sums and the Factor Set for the Universal Covering Group of \({\rm SL}(2,\,R)\)’. Nagoya Mathematical Journal 37 (1970): 67–80. http://projecteuclid.org/euclid.nmj/1118797877

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dedekind'}, {'LEMMA': 'sum'}]