"데데킨트 합"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
*  다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math><br><math>\lfloor x\rfloor</math>는 <br>
+
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 
 +
*  다음과 같이 sawtooth 함수를 정의하자<br><math>\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}</math><br><math>\lfloor x\rfloor</math>는 <math>x</math>이하의 최대정수함수(가우스함수)<br>
 
*  예<br><math>((0.8))=0.8-0-0.5=0.3</math><br><math>((-0.2))=-0.2-(-1)-0.5=0.3</math><br>
 
*  예<br><math>((0.8))=0.8-0-0.5=0.3</math><br><math>((-0.2))=-0.2-(-1)-0.5=0.3</math><br>
  
16번째 줄: 22번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">상호법칙</h5>
 
<h5 style="margin: 0px; line-height: 2em;">상호법칙</h5>
  
(정리) 데데킨트<br> 서로 소인 양의 정수 <math>d</math>와 <math>c</math>에 대하여 다음이 성립한다.
+
(정리) 데데킨트<br> 서로 소인 양의 정수 <math>d</math>와 <math>c</math>에 대하여 다음이 성립한다.<br><math>s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}</math><br>
  
<math>s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}</math>
+
 
  
 
+
(증먀
  
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">증명</h5>
 
  
 
<math>F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz</math>
 
<math>F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz</math>

2010년 1월 13일 (수) 19:47 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다음과 같이 sawtooth 함수를 정의하자
    \(\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\)
    \(\lfloor x\rfloor\)는 \(x\)이하의 최대정수함수(가우스함수)

  • \(((0.8))=0.8-0-0.5=0.3\)
    \(((-0.2))=-0.2-(-1)-0.5=0.3\)
  • 서로 소인 두 정수 \(h, k>0\)에 대하여 데데킨트 합 \(s(h,k)\)은 다음과 같이 정의됨
    \(s(h,k)=\sum_{n\mod k} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\)

 

  • 서로 소인 두 정수 \(b,c>0\)에 대하여 다음 등식이 성립함
    \(s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\)

 

 

상호법칙
  • (정리) 데데킨트
    서로 소인 양의 정수 \(d\)와 \(c\)에 대하여 다음이 성립한다.
    \(s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}\)

 

(증먀

 

\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz\)

사각형 \(\pm iM, 1+\pm iM\) 을 조금 수정하여 0은 포함하고, 1은 빠지도록 하는 컨투어 \(\Gamma\)에 대한 적분을 사용한다.

\(\lim_{M\to \infty}\cot (x+iM)=-i\)이므로, \(\lim_{M\to \infty}F(x+iM)=-i\) 임을 확인하자.

\(\int_{\Gamma}F(z)dz\) 는 \(M\)에 의존하지 않으므로, \(\int_{\Gamma}F(z)dz = \lim_{M\to\infty}\int_{\Gamma}F(z)dz=-2i\)을 얻는다.

따라서 \(\Gamma\) 내부에 있는 유수의 합 \(S\)는 \(-\frac{1}{\pi}\) 가 된다.

 

폴은 다음과 같은 점에서 발생한다.

  • \(z=0\)
  • \(z=\lambda/c\,, \lambda=1,2,\cdots, c-1\)
  • \(z=\mu/d\,, \mu=1,2,\cdots, d-1\)

\(z=\lambda/c\) 에서의 유수는 \(\frac{1}{\pi c}\cot \frac{\pi \lambda}{c}\cot\frac{\pi d\lambda}{c}\)

\(z=\mu/c\) 에서의 유수는 \(\frac{1}{\pi d}\cot \frac{\pi \mu}{c}\cot\frac{\pi d\mu}{c}\)

 

 코탄젠트의 급수전개를 사용하여 \(z=0\)에서의 유수를 구하자.

\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz =\frac{1}{\pi^3 cd z^3}(1-\frac{\pi^2z^2}{3}-\cdots)(1-\frac{\pi^2z^2d^2}{3}-\cdots)(1-\frac{\pi^2z^2c^2}{3}-\cdots)\)

따라서 \(z=0\)에서의 유수는 \(-\frac{1}{3\pi}\left(\frac{d}{c}+\frac{1}{cd}+\frac{c}{d}\right)\) 이다. 

 

\(S=\frac{4}{\pi}[-\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)+s(d,c)+s(c,d)]=-\frac{1}{\pi}\) 를 얻는다. (증명끝)

 

 

일반화

\(D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right) \left( \left( \frac{bn}{c} \right) \right)\)

 

 

b,c가 작은 경우 데데킨트합의 목록

s(0,0)=Null
s(0,1)=0
s(0,2)=Null
s(0,3)=Null
s(0,4)=Null
s(0,5)=Null
s(0,6)=Null
s(0,7)=Null
s(0,8)=Null
s(0,9)=Null
s(0,10)=Null
s(1,0)=0
s(1,1)=0
s(1,2)=0
s(1,3)=1/18
s(1,4)=1/8
s(1,5)=1/5
s(1,6)=5/18
s(1,7)=5/14
s(1,8)=7/16
s(1,9)=14/27
s(1,10)=3/5
s(2,0)=Null
s(2,1)=0
s(2,2)=Null
s(2,3)=-(1/18)
s(2,4)=Null
s(2,5)=0
s(2,6)=Null
s(2,7)=1/14
s(2,8)=Null
s(2,9)=4/27
s(2,10)=Null
s(3,0)=Null
s(3,1)=0
s(3,2)=0
s(3,3)=Null
s(3,4)=-(1/8)
s(3,5)=0
s(3,6)=Null
s(3,7)=-(1/14)
s(3,8)=1/16
s(3,9)=Null
s(3,10)=0
s(4,0)=Null
s(4,1)=0
s(4,2)=Null
s(4,3)=1/18
s(4,4)=Null
s(4,5)=-(1/5)
s(4,6)=Null
s(4,7)=1/14
s(4,8)=Null
s(4,9)=-(4/27)
s(4,10)=Null
s(5,0)=Null
s(5,1)=0
s(5,2)=0
s(5,3)=-(1/18)
s(5,4)=1/8
s(5,5)=Null
s(5,6)=-(5/18)
s(5,7)=-(1/14)
s(5,8)=-(1/16)
s(5,9)=4/27
s(5,10)=Null
s(6,0)=Null
s(6,1)=0
s(6,2)=Null
s(6,3)=Null
s(6,4)=Null
s(6,5)=1/5
s(6,6)=Null
s(6,7)=-(5/14)
s(6,8)=Null
s(6,9)=Null
s(6,10)=Null
s(7,0)=Null
s(7,1)=0
s(7,2)=0
s(7,3)=1/18
s(7,4)=-(1/8)
s(7,5)=0
s(7,6)=5/18
s(7,7)=Null
s(7,8)=-(7/16)
s(7,9)=-(4/27)
s(7,10)=0
s(8,0)=Null
s(8,1)=0
s(8,2)=Null
s(8,3)=-(1/18)
s(8,4)=Null
s(8,5)=0
s(8,6)=Null
s(8,7)=5/14
s(8,8)=Null
s(8,9)=-(14/27)
s(8,10)=Null
s(9,0)=Null
s(9,1)=0
s(9,2)=0
s(9,3)=Null
s(9,4)=1/8
s(9,5)=-(1/5)
s(9,6)=Null
s(9,7)=1/14
s(9,8)=7/16
s(9,9)=Null
s(9,10)=-(3/5)
s(10,0)=Null
s(10,1)=0
s(10,2)=Null
s(10,3)=1/18
s(10,4)=Null
s(10,5)=Null
s(10,6)=Null
s(10,7)=-(1/14)
s(10,8)=Null
s(10,9)=14/27
s(10,10)=Null

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

 

관련도서 및 추천도서

 

 

관련논문

 

블로그