데데킨트 합

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 12월 9일 (수) 10:47 판
둘러보기로 가기 검색하러 가기
간단한 소개
  • 다음과 같이 sawtooth 함수를 정의하자
    \(\left((x)\right)= \begin{cases} x-\lfloor x\rfloor - 1/2 & \mbox{ if }x\in\mathbb{R}\setminus\mathbb{Z} \\ 0 & \mbox{ if } x\in\mathbb{Z} \end{cases}\)
     

 

  • 서로 소인 두 정수 \(h, k>0\)에 대하여 데데킨트 합 \(s(h,k)\)은 다음과 같이 정의됨
    \(s(h,k)=\sum_{n\mod k} \left( \left( \frac{n}{k} \right) \right) \left( \left( \frac{hn}{k} \right) \right)\)

 

  • 서로 소인 두 정수 \(b,c>0\)에 대하여 다음 등식이 성립함
    \(s(b,c)=\frac{1}{4c}\sum_{n=1}^{c-1} \cot \left( \frac{\pi n}{c} \right) \cot \left( \frac{\pi nb}{c} \right)\)

 


상호법칙

(정리) 데데킨트
서로 소인 양의 정수 \(d\)와 \(c\)에 대하여 다음이 성립한다.

\(s(d,c)+s(c,d) =\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)-\frac{1}{4}\)

 

 

증명

\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz\)

사각형 \(\pm iM, 1+\pm iM\) 을 조금 수정하여 0은 포함하고, 1은 빠지도록 하는 컨투어 \(\Gamma\)에 대한 적분을 사용한다.

\(\lim_{M\to \infty}\cot (x+iM)=-i\)이므로, \(\lim_{M\to \infty}F(x+iM)=-i\) 임을 확인하자.

\(\int_{\Gamma}F(z)dz\) 는 \(M\)에 의존하지 않으므로, \(\int_{\Gamma}F(z)dz = \lim_{M\to\infty}\int_{\Gamma}F(z)dz=-2i\)을 얻는다.

따라서 \(\Gamma\) 내부에 있는 유수의 합 \(S\)는 \(-\frac{1}{\pi}\) 가 된다.

 

폴은 다음과 같은 점에서 발생한다.

  • \(z=0\)
  • \(z=\lambda/c\,, \lambda=1,2,\cdots, c-1\)
  • \(z=\mu/d\,, \mu=1,2,\cdots, d-1\)

\(z=\lambda/c\) 에서의 유수는 \(\frac{1}{\pi c}\cot \frac{\pi \lambda}{c}\cot\frac{\pi d\lambda}{c}\)

\(z=\mu/c\) 에서의 유수는 \(\frac{1}{\pi d}\cot \frac{\pi \mu}{c}\cot\frac{\pi d\mu}{c}\)

 

 코탄젠트의 급수전개를 사용하여 \(z=0\)에서의 유수를 구하자.

\(F(z)=\cot \pi z\, \cot \pi cz\, \cot \pi dz =\frac{1}{\pi^3 cd z^3}(1-\frac{\pi^2z^2}{3}-\cdots)(1-\frac{\pi^2z^2d^2}{3}-\cdots)(1-\frac{\pi^2z^2c^2}{3}-\cdots)\)

따라서 \(z=0\)에서의 유수는 \(-\frac{1}{3\pi}\left(\frac{d}{c}+\frac{1}{cd}+\frac{c}{d}\right)\) 이다. 

 

\(S=\frac{4}{\pi}[-\frac{1}{12}\left(\frac{d}{c}+\frac{1}{dc}+\frac{c}{d}\right)+s(d,c)+s(c,d)]=-\frac{1}{\pi}\) 를 얻는다. (증명끝)

 

 

일반화

\(D(a,b;c)=\sum_{n\mod c} \left( \left( \frac{an}{c} \right) \right) \left( \left( \frac{bn}{c} \right) \right)\)

 

 

상위 주제

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료

 

 

관련기사

 

 

블로그