등각 사상 (conformal mapping)
둘러보기로 가기
검색하러 가기
개요
- \((M,g)\)와 \((M',g')\) 는 같은 차원의 두 리만 다양체
- \(\varphi : M\to M'\) 가 적당한 함수 \(\Omega : M\to \mathbb{R_{+}}\) 에 대하여, \(\varphi^{*}g'=\Omega^2g\) 를 만족시킬 때, 이를 등각 사상이라 하며, \(\Omega\) 를 conformal factor라 부른다
- isometry는 등각 사상의 특별한 경우가 된다
local expression
- \((\varphi^{*}g')_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\) 이므로, 등각 사상이 되려면
\[\Omega^{2}g_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\] 가 만족되어야 한다
복소함수론에서의 등각 사상
- 도메인 \(U\subset \mathbb{C}\)에 대하여, 유클리드 메트릭이 주어졌다고 가정
- 함수 \(\varphi : U\to \mathbb{C}\)가 등각 사상이 될 조건은 코쉬-리만 방정식 으로 주어진다
등각 사상의 예
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxTUZuczlSZzR2ZlE/edit?pli=1
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations