삼각함수의 무한곱 표현
둘러보기로 가기
검색하러 가기
개요
- 사인함수의 무한곱표현
\[\frac{ \sin{x}}{x} = \left(1-\frac{x^2}{\pi ^2}\right) \left(1-\frac{x^2}{4 \pi ^2}\right) \left(1-\frac{x^2}{9 \pi ^2}\right) \cdots =\prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2\pi^2}\right)\] 또는 \[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\label{sinpro}\]
응용
- 감마함수 의 다음 공식을 보이는데 응용할 수 있다
\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]
- \ref{sinpro}가 \(x=1/2\)일 때, 월리스 곱 (Wallis product formula)을 얻는다
\[\prod_{k=1}^{\infty}\frac{4k^2-1}{4k^2}=\frac{2}{\pi}\]
사인의 무한곱
\(\sin{\pi z} = \pi z \prod _{n\neq 0}^{} \left(1-\frac{z}{n}\right)e^{z/n}\)
역사
- 1742년 오일러
- 수학사 연표
메모
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Infinite_product_formulae
리뷰논문, 에세이, 강의노트
관련논문
- Euler, De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum dissertatio altera, in qua eaedem summationes ex fonte maxime diverso derivantur Miscellanea Berolinensia 7, 1743, pp. 172-192
메타데이터
위키데이터
- ID : Q273008
Spacy 패턴 목록
- [{'LOWER': 'list'}, {'LOWER': 'of'}, {'LOWER': 'trigonometric'}, {'LEMMA': 'identity'}]