"오일러의 q-초기하급수에 대한 무한곱 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
16번째 줄: 16번째 줄:
 
큰 분배함수(grand partition function)는 <math>Z_G=\sum_{n=0}^{\infty}Z_B(N)z^N</math> 으로 쓸수 있다.
 
큰 분배함수(grand partition function)는 <math>Z_G=\sum_{n=0}^{\infty}Z_B(N)z^N</math> 으로 쓸수 있다.
  
<math>n_0,n_1,n_2,\cdots</math> 은 각각 에너지가 <math>E_0,E_1,E_2,\cdots</math>인 입자의 수라고 하면, 분배함수 $Z_B(N)$는 다음과 같이 표현된다
+
<math>n_0,n_1,n_2,\cdots</math> 은 각각 에너지가 <math>E_0,E_1,E_2,\cdots</math>인 입자의 수라고 하면, 분배함수 <math>Z_B(N)</math>는 다음과 같이 표현된다
 
:<math>Z_B(N)=\sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)</math>  
 
:<math>Z_B(N)=\sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)</math>  
큰 분배함수 $Z_G(N)$는 다음과 같이 주어진다
+
큰 분배함수 <math>Z_G(N)</math>는 다음과 같이 주어진다
 
:<math>
 
:<math>
 
\begin{aligned}
 
\begin{aligned}
75번째 줄: 75번째 줄:
  
 
==관련논문==
 
==관련논문==
* Zhang, Changgui. 2009. “A Modular Type Formula for Euler Infinite Product $(1-x)(1-xq)(1-xq^2)(1-xq^3)...$.” arXiv:0905.1343 (May 8). http://arxiv.org/abs/0905.1343.
+
* Zhang, Changgui. 2009. “A Modular Type Formula for Euler Infinite Product <math>(1-x)(1-xq)(1-xq^2)(1-xq^3)...</math>.” arXiv:0905.1343 (May 8). http://arxiv.org/abs/0905.1343.
 
* Richard J. McIntosh [http://dx.doi.org/10.1023/A:1006949508631 Some Asymptotic Formulae for q-Shifted Factorials], The Ramanujan Journal, 1999
 
* Richard J. McIntosh [http://dx.doi.org/10.1023/A:1006949508631 Some Asymptotic Formulae for q-Shifted Factorials], The Ramanujan Journal, 1999
  

2020년 11월 13일 (금) 04:08 기준 최신판

개요

  • q-초기하급수의 무한곱

\[(-z;q)_{\infty}=\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\] \[\frac{1}{(z;q)_{\infty}}=\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]


보존 오일러 공식

N개의 보존 입자가 있고, 에너지의 단위를 \(\hbar\omega=1\)으로 하여, 에너지레벨이 \(E_0,E_1,E_2,\cdots\) 인 시스템을 생각하자.

N개의 입자가 있는 보존 시스템의 분배함수를 \(Z_B(N)\) 이라 두자.

큰 분배함수(grand partition function)는 \(Z_G=\sum_{n=0}^{\infty}Z_B(N)z^N\) 으로 쓸수 있다.

\(n_0,n_1,n_2,\cdots\) 은 각각 에너지가 \(E_0,E_1,E_2,\cdots\)인 입자의 수라고 하면, 분배함수 \(Z_B(N)\)는 다음과 같이 표현된다 \[Z_B(N)=\sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)\] 큰 분배함수 \(Z_G(N)\)는 다음과 같이 주어진다 \[ \begin{aligned} Z_G&=\sum_{N=0}^{\infty}Z_B(N)z^N=\sum_{N=0}^{\infty} \sum_{\sum n_r=N}\exp(-\beta\sum_{r}n_r E_r)z^N\\ {}&=\prod_{r=0}^{\infty}\sum_{n_r=0}^{\infty} (ze^{-\beta E_r})^{n_r}=\prod_{r=0}\frac{1}{1-ze^{-\beta E_r}} \end{aligned} \]

특수한 경우

이제 N개의 보존 입자가 있고, 에너지의 단위를 \(\hbar\omega=1\)으로 하여, 에너지레벨이 \(0,1,2,\cdots\) 인 시스템을 생각하자. \(E_r=r\), \(q=e^{-\beta}=e^{-\hbar \omega}\)

여기에 보존 오일러 공식을 이용하면,

\[\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\]

따라서 N개의 보존이 있는 경우의 분배함수는 다음과 같이 쓸 수 있다 \[Z_B(N)=\frac{1}{(1-q)(1-q^2)\cdots(1-q^N)}.\]



페르미온 오일러 공식

다음과 같이 보존 시스템과 페르미온 시스템 사이에 일대일대응을 만들 수 있다. 보존 시스템의 각 입자의 에너지가 \(0\leq n_1^B\leq n_2^B\leq \cdots\leq n_N^B\) 인 경우와 페르미온 시스템의 각 입자의 에너지가 \(0\leq n_1^F< n_2^F< \cdots< n_N^F\) 인 경우, \(n_j^B=n_j^F-j+1\)로 두면, 일대일 대응을 얻는다.


분배함수

보존의 경우 전체 에너지는 \(E^B=n_1^B+ n_2^B+ \cdots+ n_N^B\)이고, 페르미온의 경우 전체 에너지는 \[E^F=n_1^F+ n_2^F+ \cdots+ n_N^F=n_1^B+ n_2^B+ \cdots+ n_N^B+0+1+2+\cdots+N-1=E^B+\frac{N(N-1)}{2}=E^B+{N\choose 2}\]가 된다. 따라서 N개의 입자가 있는 보존 시스템의 분배함수는 \(Z_B(N)=\frac{1}{(1-q)(1-q^2)\cdots(1-q^N)}\) 이 된다.

페르미온 시스템의 분배함수는 \[Z_F(N)=\frac{q^{N \choose 2}}{(1-q)(1-q^2)\cdots(1-q^N)}=\frac{q^{N \choose 2}}{(1-q)(1-q^2)\cdots(1-q^N)}\] 이 된다. 여기서 \(q=e^{-\beta\hbar\omega}\).

큰 분배함수(grand partition function)는 \[Z_G=\sum_{n=0}^{\infty}Z_F(n)z^n=\sum_{n=0}^{\infty}\frac{q^{n \choose 2}}{(1-q)(1-q^2)\cdots(1-q^n)}z^n \label{gpf}\] 으로 표현된다. 여기서 \(z=e^{\beta\mu}\).

오일러의 공식으로부터 다음을 얻는다 \[Z_G=\prod_{n=0}^{\infty}(1+zq^n).\]


메모


매스매티카 파일 및 계산 리소스


리뷰논문, 에세이, 강의노트


관련논문