"오일러-맥클로린 공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
<math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math>
 
<math>\frac{B_k}{k!}</math> 는 <math>\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}</math>
  
 
+
  
 
+
  
 
==응용1.==
 
==응용1.==
21번째 줄: 21번째 줄:
 
* [[거듭제곱의 합을 구하는 공식]]
 
* [[거듭제곱의 합을 구하는 공식]]
  
 
+
  
 
+
  
 
==응용2.==
 
==응용2.==
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==유용한 표현==
 
==유용한 표현==
41번째 줄: 41번째 줄:
 
단, <math>f^{(-1)}(x)=\int f(x)\,dx</math> 라고 쓰자.
 
단, <math>f^{(-1)}(x)=\int f(x)\,dx</math> 라고 쓰자.
  
 
+
  
 
+
  
 
==응용==
 
==응용==
52번째 줄: 52번째 줄:
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
  
 
+
  
 
+
  
 
==재미있는 사실==
 
==재미있는 사실==
60번째 줄: 60번째 줄:
 
* 오일러의 계산에 중요하게 활용되었다
 
* 오일러의 계산에 중요하게 활용되었다
  
 
+
  
 
+
  
 
==관련된 고교수학 또는 대학수학==
 
==관련된 고교수학 또는 대학수학==
68번째 줄: 68번째 줄:
 
* [[일변수미적분학]]
 
* [[일변수미적분학]]
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
76번째 줄: 76번째 줄:
 
* [[거듭제곱의 합을 구하는 공식]]
 
* [[거듭제곱의 합을 구하는 공식]]
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
84번째 줄: 84번째 줄:
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2U5NmI1Y2YtNjYyMi00OWEwLWI3MGQtNTRmYjdiYWM4ZTM3&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2U5NmI1Y2YtNjYyMi00OWEwLWI3MGQtNTRmYjdiYWM4ZTM3&sort=name&layout=list&num=50
  
 
+
  
 
==사전자료==
 
==사전자료==

2020년 12월 28일 (월) 03:45 판

개요

  • 수열의 합과 적분을 연결해주는 공식

\[\sum _{i=a}^{b-1} f(i)=\int_a^b f(x) \, dx+\frac{1}{2} (f(a)-f(b))+\frac{1}{12} \left(f'(b)-f'(a)\right)+\frac{1}{720} \left(f^{(3)}(a)-f^{(3)}(b)\right)+\frac{f^{(5)}(b)-f^{(5)}(a)}{30240}+\frac{f^{(7)}(a)-f^{(7)}(b)}{1209600}+\cdots\]

  • 오차항

\[\sum_{i=a}^{b-1} f(i) = \int^b_a f(x)\,dx+\sum_{k=1}^p\frac{B_k}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R\]

여기서 \[\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\]

\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\) 는 베르누이 수

\(\frac{B_k}{k!}\) 는 \(\{1, -1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, 0, 1/47900160, 0, -691/1307674368000, 0, 1/74724249600\}\)



응용1.



응용2.

유용한 표현

\(\sum_{i=0}^{n-1} f(i) = \sum_{k=0}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)

단, \(f^{(-1)}(x)=\int f(x)\,dx\) 라고 쓰자.



응용



재미있는 사실

  • 오일러의 계산에 중요하게 활용되었다



관련된 고교수학 또는 대학수학


관련된 항목들



매스매티카 파일 및 계산 리소스


사전자료


관련논문