정규분포와 그 확률밀도함수

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

  • 고교 과정의 통계에서는 정규분포의 기본적인 성질과 정규분포표 읽는 방법을 배움.
  • 평균이 <math>\mu</math>, 표준편차가 <math>\sigma</math>인 정규분포의 <math>N(\mu,\sigma^2)</math>의 확률밀도함수, 즉 가우시안은 다음과 같음이 알려져 있음.:<math>\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)</math>
  • 아래에서는 이 확률밀도함수가 어떻게 해서 얻어지는가를 보임.(기본적으로는 가우스의 증명)
  • 가우시안의 형태를 얻는 또다른 방법으로 드무아브르-라플라스 중심극한정리 를 참조.


'오차의 법칙'을 통한 가우시안의 유도[편집]

  • 오차 = 관측하려는 실제값 - 관측에서 얻어지는 값
  • 오차의 분포를 기술하는 확률밀도함수 <math>\Phi</math>는 다음과 같은 성질을 만족시켜야 함. 1) <math>\Phi(x)=\Phi(-x)</math> 2)작은 오차가 큰 오차보다 더 나타날 확률이 커야한다. 그리고 매우 큰 오차는 나타날 확률이 매우 작아야 한다. 3) <math>\int_{-\infty}^{\infty} \Phi(x)\,dx=1</math> 4) 관측하려는 실제값이 <math>\mu</math> 이고, n 번의 관측을 통해 <math>x_ 1, x_ 2, \cdots, x_n</math> 을 얻을 확률 <math>\Phi(\mu-x_ 1)\Phi(\mu-x_ 2)\cdots\Phi(\mu-x_n)</math>의 최대값은 <math>\mu=\frac{x_ 1+x_ 2+ \cdots+ x_n}{n}</math>에서 얻어진다.
  • 4번 조건을 가우스의 산술평균의 법칙이라 부르며, 관측에 있어 실제값이 될 개연성이 가장 높은 값은 관측된 값들의 산술평균이라는 가정을 하는 것임.


정리 (가우스)

이 조건들을 만족시키는 확률밀도함수는 <math>\Phi(x)=\frac{h}{\sqrt{\pi}}e^{-h^2x^2}</math> 형태로 주어진다. 여기서 <math>h</math>는 확률의 정확도와 관련된 값임. (실제로는 표준편차와 연관되는 값)


증명

<math>n=3</math>인 경우에 4번 조건을 만족시키는 함수를 찾아보자.

<math>\Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)</math>의 최대값은 <math>x=\frac{x_ 1+x_ 2+ x_ 3}{3}</math> 에서 얻어진다.

따라서 <math>\ln \Phi(x-x_ 1)\Phi(x-x_ 2)\Phi(x-x_ 3)</math> 의 최대값도 <math>x=\frac{x_ 1+x_ 2+ x_ 3}{3}</math> 에서 얻어진다.

미분적분학의 결과에 의해, <math>x=\frac{x_ 1+x_ 2+ x_ 3}{3}</math> 이면, <math>\frac{\Phi'(x-x_ 1)}{\Phi(x-x_ 1)}+\frac{\Phi'(x-x_ 2)}{\Phi(x-x_ 2)}+\frac{\Phi'(x-x_ 3)}{\Phi(x-x_ 3)}=0</math> 이어야 한다.

<math>F(x)=\frac{\Phi'(x)}{\Phi(x)}</math> 으로 두자.

<math>x+y+z=0</math> 이면, <math>F(x)+F(y)+F(z)=0</math> 이어야 한다.

1번 조건에 의해, <math>F</math> 는 기함수이다.

따라서 모든 <math>x,y</math> 에 의해서, <math>F(x+y)=F(x)+F(y)</math> 가 성립한다. 그러므로 <math>F(x)=Ax</math> 형태로 쓸수 있다.

이제 적당한 상수 <math>B, h</math> 에 의해 <math>\Phi(x)=Be^{-h^2x^2}</math> 꼴로 쓸 수 있다.

모든 <math>n</math>에 대하여 4번조건이 만족됨은 쉽게 확인할 수 있다. (증명끝)


역사[편집]

  • 중심극한정리는 여러 과정을 거쳐 발전
  • 이항분포의 중심극한 정리
    • 라플라스의 19세기 초기 버전

확률변수 X가 이항분포 B(n,p)를 따를 때, n이 충분히 크면 X의 분포는 근사적으로 정규분포 N(np,npq)를 따른다


재미있는 사실[편집]

  • 정규분포와 중심극한정리에 대한 이해는 교양인이 알아야 할 수학 주제의 하나
  • Galton's quincunx
  • 예전 독일 마르크화에는 가우스의 발견을 기려 정규분포곡선이 새겨짐1950958-Gauss-detail2.jpg



관련된 항목들[편집]


계산 리소스[편집]


관련도서[편집]


사전형태의 자료[편집]


에세이[편집]


관련기사[편집]



블로그[편집]



동영상[편집]