킨친 상수
둘러보기로 가기
검색하러 가기
개요
- 실수 \(x>0\)의 단순연분수 전개가 다음과 같이 주어진다고 하자
\[x = a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+\cfrac{1}{\ddots}}}}\;\]
- 거의 모든 \(x\)에 대하여 다음이 성립한다
\[\lim_{n \rightarrow \infty } \left( a_1 a_2 ... a_n \right) ^{1/n} = K_0\] 여기서 \(K_0\)는 킨친 상수로 다음과 같이 주어진다 \[ K_0 = \prod_{r=1}^\infty {\left( 1+{1\over r(r+2)}\right)}^{\frac{\ln r}{\ln 2}} \approx 2.6854520010\dots \]
매스매티카 파일 및 계산리소스