폴리로그 함수(polylogarithm)
둘러보기로 가기
검색하러 가기
개요
- 다이로그 함수(dilogarithm) 의 일반화
정의
\[\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(t) \frac{dt}{t}\] \[\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(t) \frac{dt}{t}\]
로그함수
\[-\log (1-z)=z+\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\frac{z^5}{5}+\cdots\]
역사
메모
- Scheider, René. “The de Rham Realization of the Elliptic Polylogarithm in Families.” arXiv:1408.3819 [math], August 17, 2014. http://arxiv.org/abs/1408.3819.
- Jameson, Polylogarithms, multiple zeta values, and the series of Hjortnaes and Comtet
- http://mathoverflow.net/questions/25428/what-is-special-about-polylogarithms-that-leads-to-so-many-interesting-identities
- http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
- Functional equations of polylogarithms Herbert Gangl
- http://www.maths.dur.ac.uk/~dma0hg/kyoto.pdf
- http://www.maths.dur.ac.uk/~d40ppt/pdf/John_Rhodes.pdf
관련된 항목들
사전 형태의 자료
리뷰논문, 에세이, 강의노트
- Vergu, C. “Polylogarithm Identities, Cluster Algebras and the N=4 Supersymmetric Theory.” arXiv:1512.08113 [hep-Th], December 26, 2015. http://arxiv.org/abs/1512.08113.
- John R. Rhodes Polylogarithms ,2008
- Bowman, Douglas, and David M. Bradley. “Multiple Polylogarithms: A Brief Survey.” arXiv:math/0310062, October 5, 2003. http://arxiv.org/abs/math/0310062.
- Hain, Richard. “Classical Polylogarithms.” arXiv:alg-geom/9202022, February 20, 1992. http://arxiv.org/abs/alg-geom/9202022.
- Askey, Richard. 1982. “Book Review: Polylogarithms and Associated Functions.” American Mathematical Society. Bulletin. New Series 6 (2): 248–251. doi:10.1090/S0273-0979-1982-14998-9.
- Some wonderful formulas ... an introduction to polylogarithms A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286 (http://www.ega-math.narod.ru/Apery2.htm )
관련논문
- Ngoc Hoang, Gérard Duchamp, Hoang Ngoc Minh, The algebra of Kleene stars of the plane and polylogarithms, arXiv:1602.02801[math.CO], February 05 2016, http://arxiv.org/abs/1602.02801v2, 10.1145/1235, http://dx.doi.org/10.1145/1235
- Kenji Sakugawa, Shin-ichiro Seki, Finite and étale polylogarithms, http://arxiv.org/abs/1603.05811v1
- Frellesvig, Hjalte, Damiano Tommasini, and Christopher Wever. “On the Reduction of Generalized Polylogarithms to \(\text{Li}_n\) and \(\text{Li}_{2,2}\) and on the Evaluation Thereof.” arXiv:1601.02649 [hep-Ph], January 11, 2016. http://arxiv.org/abs/1601.02649.
- Henn, Johannes M., Alexander V. Smirnov, and Vladimir A. Smirnov. “Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six.” arXiv:1512.08389 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 28, 2015. http://arxiv.org/abs/1512.08389.
- Rudenko, Daniil. “On the Functional Equations for Polylogarithms in One Variable.” arXiv:1511.09110 [math], November 2, 2015. http://arxiv.org/abs/1511.09110.
- Sakugawa, Kenji, and Shin-ichiro Seki. “On Functional Equations of Finite Multiple Polylogarithms.” arXiv:1509.07653 [math], September 25, 2015. http://arxiv.org/abs/1509.07653.
- Polylogarithmic ladders, hypergeometric series and the ten millionth digits of \(\zeta(3)\) and \(\zeta(5)\) D. J. Broadhurst, 1998
- On the rapid computation of various polylogarithmic constants David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.
- Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, 1986
- The classical polylogarithms, algebraic K-theory and \(\zeta_F(n)\), Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
메타데이터
위키데이터
- ID : Q1238449
Spacy 패턴 목록
- [{'LEMMA': 'polylogarithm'}]