표본평균과 표본분산
개요
- 여론조사 에 응용되는 통계의 기초 개념
- 크기가 n인 표본평균의 분산은 모분산의 1/n 배가 된다
유한모집단, 비복원추출의 경우
- 크기가 N인 유한모집단 \(\{x_1,\cdots, x_N\}\)의 모평균이 \(\mu\), 모분산이 \(\sigma^2\) 라 하자. 이는 다음과 같이 주어진다
\[ \mu=\frac{1}{N}\sum_{i=1}^{N}x_{i} \]
\[ \sigma^2=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\mu)^2 \]
- 여론조사는, 모집단의 \(\mu\)와 \(\sigma^2\)를 알지 못하는 상태에서, 하나의 표본을 통하여 이를 추정하는 문제에 해당한다.
- 크기가 n인 표본 \(\{y_1,\cdots,y_n\}\subseteq \{x_1,\cdots, x_N\}\) 을 모집단에서 추출했다고 하면, 이로부터 표본평균 \(\bar{y}\)과 표본분산 \(s^2\)을 다음과 같이 정의한다 :
\[\bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_{i}\] \[s^2=\frac{1}{n-1}\sum_{i=1}^{n}(y_{i}-\bar{y})^2\]
- \(\bar{y}\)와 \(s^2\) 는 모두 새로운 확률변수로 이해할 수 있으며, 이 확률변수의 평균과 분산을 모평균 \(\mu\), 모분산 \(\sigma^2\)를 통하여 표현할 수 있다.
- 확률변수 \(\bar{y}\)의 경우
\[E(\bar{y})=\mu,\] \[V(\bar{y})=\frac{\sigma^2}{n}(\frac{N-n}{N-1})\]
- 확률변수 \(s^2\)의 경우
\[E(s^2)=\frac{N}{N-1}\sigma^2\]
모평균과 모분산의 추정
- 평균이 \(\mu\)인 모집단에서 n 개의 표본 \(y_1,\cdots,y_n\) 을 추출할 때 표본평균 \(\bar{y}\)는 \(\mu\)의 불편추정량이다. 즉\[E(\bar{y})=\mu\] 이 성립한다.
- 평균이 \(\mu\), 분산 \(\sigma^2\) 인 크기가 N인 모집단에서 n개의 표본 \(y_1,\cdots,y_n\)을 추출할 때 표본분산 \(s^2\)은 \(\frac{N}{N-1}\sigma^2\)의 불편추정량이다. 즉\[E(s^2)=\frac{N}{N-1}\sigma^2\] 이 성립한다.
- 모평균 \(\mu\)은 표본평균 \(\bar{y}\) 로 추정할 수 있다
- 표본평균의 분산 \(V(\bar{y})\)은 표본분산 \(s^2\)를 이용하여 \(\frac{s^2}{n}(\frac{N-n}{N})\) 로 추정할 수 있다
예
- 모집단이 \(\{1,2,3,4,5,6\}\) 주어진 경우를 생각하자.
- 모평균 \(\mu\), 모분산 \(\sigma^2\)은 다음과 같이 주어진다
\[\mu=\frac{1+2+3+4+5+6}{6}=\frac{7}{2}\] \[\sigma^2=\sum_{i=1}^{6}(x_i-\mu)^2 = \frac{35}{12}\]
표본의 크기가 2인 경우
\begin{array}{c|c|c|c} i & \text{sample }i & \bar{y}_i & (\bar{y}_i-\mu)^2 & s_i^2 \\ 1 & \{1,2\} & \frac{3}{2} & 4 & \frac{1}{2} \\ 2 & \{1,3\} & 2 & \frac{9}{4} & 2 \\ 3 & \{1,4\} & \frac{5}{2} & 1 & \frac{9}{2} \\ 4 & \{1,5\} & 3 & \frac{1}{4} & 8 \\ 5 & \{1,6\} & \frac{7}{2} & 0 & \frac{25}{2} \\ 6 & \{2,3\} & \frac{5}{2} & 1 & \frac{1}{2} \\ 7 & \{2,4\} & 3 & \frac{1}{4} & 2 \\ 8 & \{2,5\} & \frac{7}{2} & 0 & \frac{9}{2} \\ 9 & \{2,6\} & 4 & \frac{1}{4} & 8 \\ 10 & \{3,4\} & \frac{7}{2} & 0 & \frac{1}{2} \\ 11 & \{3,5\} & 4 & \frac{1}{4} & 2 \\ 12 & \{3,6\} & \frac{9}{2} & 1 & \frac{9}{2} \\ 13 & \{4,5\} & \frac{9}{2} & 1 & \frac{1}{2} \\ 14 & \{4,6\} & 5 & \frac{9}{4} & 2 \\ 15 & \{5,6\} & \frac{11}{2} & 4 & \frac{1}{2} \\ \end{array}
표본평균 \(\bar{y}\)은 \(\left\{\frac{3}{2},2,\frac{5}{2},3,\frac{7}{2},\frac{5}{2},3,\frac{7}{2},4,\frac{7}{2},4,\frac{9}{2},\frac{9}{2},5,\frac{11}{2}\right\}\) 을 모집단으로 하며, 이들의 평균 \(E(\bar{y})\)과 분산 \(V(\bar{y})\) 는 다음과 같이 계산된다 \[ E(\bar{y})=\frac{\sum_{i=1}^{15} \bar{y}_i}{15}=\frac{\frac{3}{2}+2+\frac{5}{2}+3+\frac{7}{2}+\frac{5}{2}+3+\frac{7}{2}+4+\frac{7}{2}+4+\frac{9}{2}+\frac{9}{2}+5+\frac{11}{2}}{15}=\frac{7}{2}=\mu \]
\[ V(\bar{y})=\frac{\sum_{i=1}^{15} (\bar{y}_i-\mu)^2}{15}=\frac{4+\frac{9}{4}+1+\frac{1}{4}+0+1+\frac{1}{4}+0+\frac{1}{4}+0+\frac{1}{4}+1+1+\frac{9}{4}+4}{15}=\frac{7}{6}=\frac{(N-n)}{(N-1)}\frac{\sigma^2}{n} \]
표본분산 \(s^2\)은 \(\left\{\frac{1}{2},2,\frac{9}{2},8,\frac{25}{2},\frac{1}{2},2,\frac{9}{2},8,\frac{1}{2},2,\frac{9}{2},\frac{1}{2},2,\frac{1}{2}\right\}\) 을 모집단으로 하며, 이들의 평균 \(E(s^2)\)은 다음과 같이 계산된다 \[ E(s^2)=\frac{\sum_{i=1}^{15} s_i^2}{15}=\frac{\frac{1}{2}+2+\frac{9}{2}+8+\frac{25}{2}+\frac{1}{2}+2+\frac{9}{2}+8+\frac{1}{2}+2+\frac{9}{2}+\frac{1}{2}+2+\frac{1}{2}}{15}=\frac{7}{2}=\frac{N}{N-1} \sigma ^2 \]
표본의 크기가 3인 경우
\begin{array}{c|c|c|c} i & \text{sample }i & \bar{y}_i & (\bar{y}_i-\mu)^2 & s_i^2 \\ 1 & \{1,2,3\} & 2 & \frac{9}{4} & 1 \\ 2 & \{1,2,4\} & \frac{7}{3} & \frac{49}{36} & \frac{7}{3} \\ 3 & \{1,2,5\} & \frac{8}{3} & \frac{25}{36} & \frac{13}{3} \\ 4 & \{1,2,6\} & 3 & \frac{1}{4} & 7 \\ 5 & \{1,3,4\} & \frac{8}{3} & \frac{25}{36} & \frac{7}{3} \\ 6 & \{1,3,5\} & 3 & \frac{1}{4} & 4 \\ 7 & \{1,3,6\} & \frac{10}{3} & \frac{1}{36} & \frac{19}{3} \\ 8 & \{1,4,5\} & \frac{10}{3} & \frac{1}{36} & \frac{13}{3} \\ 9 & \{1,4,6\} & \frac{11}{3} & \frac{1}{36} & \frac{19}{3} \\ 10 & \{1,5,6\} & 4 & \frac{1}{4} & 7 \\ 11 & \{2,3,4\} & 3 & \frac{1}{4} & 1 \\ 12 & \{2,3,5\} & \frac{10}{3} & \frac{1}{36} & \frac{7}{3} \\ 13 & \{2,3,6\} & \frac{11}{3} & \frac{1}{36} & \frac{13}{3} \\ 14 & \{2,4,5\} & \frac{11}{3} & \frac{1}{36} & \frac{7}{3} \\ 15 & \{2,4,6\} & 4 & \frac{1}{4} & 4 \\ 16 & \{2,5,6\} & \frac{13}{3} & \frac{25}{36} & \frac{13}{3} \\ 17 & \{3,4,5\} & 4 & \frac{1}{4} & 1 \\ 18 & \{3,4,6\} & \frac{13}{3} & \frac{25}{36} & \frac{7}{3} \\ 19 & \{3,5,6\} & \frac{14}{3} & \frac{49}{36} & \frac{7}{3} \\ 20 & \{4,5,6\} & 5 & \frac{9}{4} & 1 \\ \end{array}
표본평균 \(\bar{y}\)의 평균 \(E(\bar{y})\)과 분산 \(V(\bar{y})\) 는 다음과 같다 \[ E(\bar{y})=\frac{7}{2}=\mu \]
\[ V(\bar{y})=\frac{7}{12}=\frac{(6-3)}{(6-1)}\frac{\sigma^2}{3} \]
표본분산 \(s^2\)의 평균 \(E(s^2)\)은 다음과 같다 \[ E(s^2)=\frac{7}{2}=\frac{6}{6-1} \sigma ^2 \]
표본평균
표본분산
- n-1로 나누기 vs n으로 나누기
- n-1 로 나누는 경우, 비편향분산이라고 불리기도 하며, 모집단의 분산에 대한 불편추정량이 되는 좋은 성질을 갖는다.
- http://en.wikipedia.org/wiki/Variance#Population_variance_and_sample_variance
- http://en.wikipedia.org/wiki/Bessel%27s_correction
- Bessel's correction yields an unbiased estimator of the population variance
- http://www.minitab.com/support/documentation/answers/Why%20is%20S2%20the%20unbiased%20estimator.pdf
- 편향분산
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxYjgwMWFmOTUtMGFmMi00YzE2LThjMWQtZDNkMTEwZGFlYjU5&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역
- 한국통계학회 통계학 용어 온라인 대조표
- population 모집단
- sampling without replacement 비복원표집, 비복원추출
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련도서
메타데이터
위키데이터
- ID : Q175199
Spacy 패턴 목록
- [{'LEMMA': 'variance'}]