호프스태터의 나비
둘러보기로 가기
검색하러 가기
메모
- I. Krasovsky, Central gaps in the spectrum of the almost Mathieu operator, arXiv:1602.08624 [math.SP], February 27 2016, http://arxiv.org/abs/1602.08624
- http://tuckoo.tistory.com/445
- http://en.wikipedia.org/wiki/Hofstadter's_butterfly
- http://en.wikipedia.org/wiki/Almost_Mathieu_operator
관련논문
- Yasuyuki Hatsuda, Hosho Katsura, Yuji Tachikawa, Hofstadter's Butterfly in Quantum Geometry, arXiv:1606.01894 [hep-th], June 06 2016, http://arxiv.org/abs/1606.01894
- Avila, Artur, Jiangong You, and Qi Zhou. “Sharp Phase Transitions for the Almost Mathieu Operator.” arXiv:1512.03124 [math-Ph], December 9, 2015. http://arxiv.org/abs/1512.03124.
- Strohmer, Thomas, and Tim Wertz. “Almost Eigenvalues and Eigenvectors of Almost Mathieu Operators.” arXiv:1501.06001 [math], January 23, 2015. http://arxiv.org/abs/1501.06001.
- Wang, Yiqian, and Zhenghe Zhang. “Cantor Spectrum for a Class of \(C^2\) Quasiperiodic Schr"odinger Operators.” arXiv:1410.0101 [math], September 30, 2014. http://arxiv.org/abs/1410.0101.
- Geisler, M. C., J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer. “Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly.” Physical Review Letters 92, no. 25 (June 22, 2004): 256801. doi:10.1103/PhysRevLett.92.256801.
메타데이터
위키데이터
- ID : Q21431159
Spacy 패턴 목록
- [{'LEMMA': 'Hofstadter'}]