Figure eight knot

수학노트
둘러보기로 가기 검색하러 가기

introduction

Answered by Agol: The figure eight knot (complement) is the starting point for much of hyperbolic geometry. Although other hyperbolic manifolds were discovered before it, the figure eight knot complement has one of the simplest hyperbolic structures to analyze. Thurston first proved his hyperbolic Dehn surgery theorem for the figure eight knot complement - after understanding the proof in this case, the general case is not much harder to understand. It is the simplest knot for which every 3-manifold is a branched cover over it. It was one of the first (non-torus) knots for which the knot-complement problem was proven. It has the most number of non-hyperbolic Dehn-fillings over any one-cusped hyperbolic 3-manifold. It is the smallest volume orientable hyperbolic manifold with one cusp. It was the first knot proven that all non-trivial Dehn fillings have a finite-sheeted cover with positive first betti number. It was the first knot for which the volume conjecture has been verified.


volume

  • obtained by glueing two copies of ideal tetrahedra
  • thus the volume is given by\[6\Lambda(\pi/3)\] where 로바체프스키 함수
  • 2.02988321281930725\[V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\] where D is Bloch-Wigner dilogarithm.
  • what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149


memo


computational resource

메타데이터

위키데이터

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'figure'}, {'OP': '*'}, {'LOWER': 'eight'}, {'LEMMA': 'knot'}]