Kazhdan-Lusztig conjecture

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • The Kazhdan-Lusztig theory provides the solution to the problem of determining the irreducible characters in the BGG category \(\mathcal{O}\) of semisimple Lie algebras ([KL], [BB], [BK]).
  • The theory was originally formulated in terms of the canonical bases (i.e., Kazhdan-Lusztig bases) of Hecke algebras.
  • 1979 conjectures
    • KL character formula
    • KL positivity conjecture
  • Kazhdan-Lusztig polynomial


Hecke algebra

  • basis of Hecke algebra \(\{H_{x}| x\in W\}\)
  • new basis of Hecke algebra \(\{\underline{H}_{x}| x\in W\}\)

\[ \underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y} \] where \(h_{y,x}\in v\mathbb{Z}[v]\) is so called the Kazhdan-Lusztig polynomial

  • positivity conjecture \[h_{x,y}\in \mathbb{Z}_{\geq 0}[v]\]

Hodge theory

  • Poincare duality
  • hard Lefshetz theorem
  • Hodge-Riemann bilinear relation


related items


exposition


articles

  • [BB] A. Beilinson and J. Bernstein, Localisation de \(\mathfrak g\)-modules, C.R. Acad. Sci. Paris Ser. I Math. 292 (1981), 15-18.
  • [BK] J.L.Brylinski and M.Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410.
  • [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kazhdan'}, {'OP': '*'}, {'LOWER': 'lusztig'}, {'LEMMA': 'polynomial'}]