Mathematical Physics by Carl Bender

수학노트
둘러보기로 가기 검색하러 가기

list


lecture 1 perturbation method

  • solve \(x^5+x=1\)

method 1

  • try \(x^5+\epsilon x=1\)
  • find \(x(\epsilon)\) satisfying \(x(\epsilon)^5+\epsilon x(\epsilon)=1\)
  • answer

\[x(\epsilon)=1-\frac{\epsilon }{5}-\frac{\epsilon ^2}{25}-\frac{\epsilon ^3}{125}+\frac{21 \epsilon ^5}{15625}+\frac{78 \epsilon ^6}{78125}+\cdots\]

  • Setting \(\epsilon=1\) gives numerical value \(0.75\cdots\)


weak coupling approach

  • use the similar idea to Feynman diagrams
  • try \(\epsilon x^5+ x=1\)
  • we get

\[ x(\epsilon)=1-\epsilon +5 \epsilon ^2-35 \epsilon ^3+285 \epsilon ^4-2530 \epsilon ^5+23751 \epsilon ^6+\cdots \]

  • can we get a meaningful number out of this?
  • yes, for example, Pade summation can be used


asymptotics

  • \(f\sim g\, \quad (x\to x_0)\) iff \[\lim_{x\to x_0}\frac{f(x)}{g(x)}=1\]
  • apply the method of dominant balance to \(\epsilon x^5+ x=1\)
  • \(x^4\sim -1/\epsilon\, \quad (\epsilon \to 0)\) and thus

\[x\sim \frac{\omega}{\epsilon^{1/4}}\, \quad (\epsilon \to 0)\] where \(\omega^4=-1\)

  • this is the first order approximation and we can have more terms


lecture 2

second order ordinary differential equation

  • 틀:수학노트
  • \(y''+Q(x)y=0\) Schrodinger equation
  • this is a very hard problem to solve
  • consider a perturbed equation \(y''+\epsilon Q(x)y=0\) so that its unperturbed equation is \(y''=0\) with initial conditions \(y(0)=\alpha, y'(0)=\beta\)
  • take the formal solution \(y(x)=\sum_{n}a_n(x)\epsilon^n\) where \(a_0(x)=\alpha+\beta x\)
  • for it to be a solution, it should satisfy

\[ a_n''(x)=-Q(x)a_{n-1}(x) \] for each \(n>0\)

  • thus we get

\[ a_n(x)=-\int_0^x\int_0^t Q(s)a_{n-1}(s)\,ds\,dt \]

eigenvalue problem

  • Schrodinger equation

\[ -\left(\frac{d^2}{dx^2} + V(x)\right)\psi=E \psi \]

  • if \(V(x)=x^2/4\), we get harmonic oscillator
  • anharmonic oscillator problem (similar to Phi-4 theory)

\[ -\left(\frac{d^2}{dx^2} +x^2/4+x^4/4\right)\psi=E \psi \]

  • perturbed version

\[ -\left(\frac{d^2}{dx^2} +x^2/4+\epsilon x^4/4\right)\psi(\epsilon)=E(\epsilon)\psi(\epsilon) \]

  • \(E(\epsilon)=\sum_n a_n(x)\epsilon^n\)
  • \(\psi(\epsilon)=\sum_n \psi_n(x)\epsilon^n\)
  • ground state \(\psi_0(x)=e^{-x^2/2}\) with \(a_0=1/2\)

Riemann surface and discrete spectrum

  • analytic continuation using the parameter \(\epsilon\) gives all the energy states
  • they correspond to different sheets of a Riemann surface


lecture 3

  • Shanks transform for alternating series
  • two examples


computational resource


books

  • Bender, Carl M., and Steven A. Orszag. 1999. Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer.