Number theory and physics
둘러보기로 가기
검색하러 가기
examples
totally real field and CFT
- Huang, An, On Twisted Virasoro Operators and Number Theory 2009
- adele and idele
- ANALOGIES BETWEEN KNOTS AND PRIMES, 3-MANIFOLDS AND NUMBER RINGs
- Masanori Morishita
- A general approach to quantum fields and strings on adeles
- Bernard David Barkan Roth
- The Weil proof and the geometry of the adeles class space
- Alain Connes (College de France), Caterina Consani (Johns Hopkins), Matilde Marcolli (MPI Bonn)
- Quantum field theory, Grassmannians, and algebraic curves
- Edward Witten
- On p-adic and Adelic generalization of quantum field theory
- Branko Dragovich
instanton numbers
- Stienstra, Jan. 2006. “Mahler Measure Variations, Eisenstein Series and Instanton Expansions.” In Mirror Symmetry. V, 38:139–150. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282958.
statistical mechanics
- From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps
- Authors: Siegfried Grossmann, Martin Holthaus
- Number theory, dynamical systems and statistical mechanics.
- Andreas Knauf
- Physics and algebras
- Modular invariance in math and physics
- Mock theta and physics
- Infinities in number theory and physics
- Representations of linear groups : an introduction based on examples from physics and number theory
- Physics of number fields
- Amplitudes and Periods conference
- Arithmetic Chern-Simons Theory
expositions
- Vergu, Polylogarithms and physical applications, 2013
- Vergu, Notes on Polylogarithms
- Cardy, John. 2010. “The Ubiquitous ‘C’: From the Stefan-Boltzmann Law to Quantum Information.” arXiv:1008.2331 (August 13). doi:10.1088/1742-5468/2010/10/P10004. http://arxiv.org/abs/1008.2331.
- MATILDE MARCOLLI NUMBER THEORY IN PHYSICS
- http://physics.stackexchange.com/questions/414/number-theory-in-physics
articles
- Steven S. Gubser, Johannes Knaute, Sarthak Parikh, Andreas Samberg, Przemek Witaszczyk, \(p\)-adic AdS/CFT, arXiv:1605.01061 [hep-th], May 03 2016, http://arxiv.org/abs/1605.01061
- Broadhurst, David, and Oliver Schnetz. “Algebraic Geometry Informs Perturbative Quantum Field Theory.” arXiv:1409.5570 [hep-Th], September 19, 2014. http://arxiv.org/abs/1409.5570.
web resources