Q-states Potts model and Ashkin-Teller model

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • The Potts model plays an essential role in classical statistical mechanics, illustrating many fundamental phenomena. One example is the existence of partially long-range-ordered states, in which some degrees of freedom remain disordered
  • Potts model is the spin model for which the Boltzmann weights depend only on whether the two atoms are in the same state or not.
  • 2-states Potts model = Ising model M(3,4) minimal model
  • 3-states Potts model = M(5,6) minimal model
  • recent developments of superintegrable chiral Potts model
  • types
    • self-dual potts model
    • chiral potts model



two dimensional water

  • modeling freezing water



related items



encyclopedia



books


expositions

  • Au-Yang, Helen, and Jacques H. H. Perk. “About 30 Years of Integrable Chiral Potts Model, Quantum Groups at Roots of Unity and Cyclic Hypergeometric Functions.” arXiv:1601.01014 [math-Ph], January 5, 2016. http://arxiv.org/abs/1601.01014.
  • Perk, Jacques H. H. “The Early History of the Integrable Chiral Potts Model and the Odd-Even Problem.” arXiv:1511.08526 [math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08526.

articles

  • Au-Yang, Helen, and Jacques H. H. Perk. “CSOS Models Descending from Chiral Potts Models: Degeneracy of the Eigenspace and Loop Algebra.” arXiv:1511.08523 [cond-Mat, Physics:math-Ph], November 26, 2015. http://arxiv.org/abs/1511.08523.
  • Jacobsen, Jesper Lykke. “Critical Points of Potts and O(\(N\)) Models from Eigenvalue Identities in Periodic Temperley-Lieb Algebras.” arXiv:1507.03027 [cond-Mat, Physics:math-Ph], July 10, 2015. http://arxiv.org/abs/1507.03027.
  • Lencses, M., and G. Takacs. “Confinement in the Q-State Potts Model: An RG-TCSA Study.” arXiv:1506.06477 [cond-Mat, Physics:hep-Th], June 22, 2015. http://arxiv.org/abs/1506.06477.
  • Molkaraie, Mehdi, and Vicenc Gomez. ‘Efficient Monte Carlo Methods for the Potts Model at Low Temperature’. arXiv:1506.07044 [physics, Stat], 23 June 2015. http://arxiv.org/abs/1506.07044.
  • Ikhlef, Yacine, and Robert Weston. ‘Discrete Holomorphicity in the Chiral Potts Model’. arXiv:1502.04944 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 17 February 2015. http://arxiv.org/abs/1502.04944.
  • Dasu, Shival, and Matilde Marcolli. “Potts Models with Magnetic Field: Arithmetic, Geometry, and Computation.” arXiv:1412.7925 [math-Ph], December 26, 2014. http://arxiv.org/abs/1412.7925.
  • Qin, M. P., Q. N. Chen, Z. Y. Xie, J. Chen, J. F. Yu, H. H. Zhao, B. Normand, and T. Xiang. ‘Partial Long-Range Order in Antiferromagnetic Potts Models’. Physical Review B 90, no. 14 (21 October 2014). doi:10.1103/PhysRevB.90.144424.
  • The Potts model
    • Fa-Yueh Wu, Rev. Mod. Phys. 54, 235 - 268 (1982)
  • Critical exponents of two-dimensional Potts and bond percolation models
    • H W J Blote , M P Nightingale and B Derrida, 1981
  • Some Exact Results for the Ashkin-Teller Model
    • Temperley, H. N. V.; Ashley, Susan E, 1979

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'potts'}, {'LEMMA': 'model'}]