Superintegrable systems

수학노트
둘러보기로 가기 검색하러 가기

related items


expositions

  • Miller Jr., Willard, Sarah Post, and Pavel Winternitz. ‘Classical and Quantum Superintegrability with Applications’. arXiv:1309.2694 [math-Ph, Physics:nlin], 10 September 2013. http://arxiv.org/abs/1309.2694.

articles

  • Manuel F. Rañada, Superintegrable systems with a position dependent mass : Kepler-related and Oscillator-related systems, arXiv:1605.02336 [math-ph], May 08 2016, http://arxiv.org/abs/1605.02336
  • Ernest G. Kalnins, Willard Miller Jr., Eyal Subag, Bôcher Contractions of Conformally Superintegrable Laplace Equations, arXiv:1512.09315 [math-ph], December 31 2015, http://arxiv.org/abs/1512.09315, 10.3842/SIGMA.2016.038, http://dx.doi.org/10.3842/SIGMA.2016.038, SIGMA 12 (2016), 038, 31 pages
  • Fordy, Allan P. “A Note on Some Superintegrable Hamiltonian Systems.” arXiv:1601.03079 [nlin], January 12, 2016. http://arxiv.org/abs/1601.03079.
  • Kalnins, E. G., Jr Miller, and E. Subag. “Bocher Contractions of Conformally Superintegrable Laplace Equations.” arXiv:1512.09315 [math-Ph], December 31, 2015. http://arxiv.org/abs/1512.09315.
  • Ballesteros, Angel, Francisco J. Herranz, Sengul Kuru, and Javier Negro. “Factorization Approach to Superintegrable Systems: Formalism and Applications.” arXiv:1512.06610 [math-Ph, Physics:nlin], December 21, 2015. http://arxiv.org/abs/1512.06610.
  • Hoque, Md Fazlul, Ian Marquette, and Yao-Zhong Zhang. “Family of \(N\)-Dimensional Superintegrable Systems and Quadratic Algebra Structures.” arXiv:1510.00922 [math-Ph], October 4, 2015. http://arxiv.org/abs/1510.00922.
  • Isaac, Phillip S., and Ian Marquette. “Families of 2D Superintegrable Anisotropic Dunkl Oscillators and Algebraic Derivation of Their Spectrum.” arXiv:1509.01896 [math-Ph], September 7, 2015. http://arxiv.org/abs/1509.01896.
  • Reshetikhin, Nicolai. “Degenerately Integrable Systems.” arXiv:1509.00730 [hep-Th, Physics:math-Ph], September 2, 2015. http://arxiv.org/abs/1509.00730.
  • Miller Jr., Willard, Qiushi Li, Yuxuan Chen, and Ernie G. Kalnins. ‘Examples of Complete Solvability of 2D Classical Superintegrable Systems’. arXiv:1505.00527 [math-Ph], 4 May 2015. http://arxiv.org/abs/1505.00527.
  • Hoque, Md Fazlul, Ian Marquette, and Yao-Zhong Zhang. ‘A New Family of \(N\) Dimensional Superintegrable Double Singular Oscillators and Quadratic Algebra \(Q(3)\oplus So(n) \oplus so(N-N)\)’. arXiv:1504.04910 [math-Ph], 19 April 2015. http://arxiv.org/abs/1504.04910.
  • Mendoza, Jairo A., Juan C. lopez, and Rosalba Mendoza. “Topics in Special Functions.” arXiv:1502.08013 [math], February 18, 2015. http://arxiv.org/abs/1502.08013.
  • Heinonen, R., E. G. Kalnins, Jr Miller, and E. Subag. “Structure Relations and Darboux Contractions for 2D 2nd Order Superintegrable Systems.” arXiv:1502.00128 [math-Ph], January 31, 2015. http://arxiv.org/abs/1502.00128.
  • Miller Jr, Willard, and Qiushi Li. ‘Wilson Polynomials/functions and Intertwining Operators for the Generic Quantum Superintegrable System on the 2-Sphere’. arXiv:1411.2112 [math-Ph], 8 November 2014. http://arxiv.org/abs/1411.2112.
  • Hoque, Md Fazlul, Ian Marquette, and Yao-Zhong Zhang. “Quadratic Algebra Structure and Spectrum of a New Superintegrable System in N-Dimension.” arXiv:1410.3550 [math-Ph], October 13, 2014. http://arxiv.org/abs/1410.3550.
  • Daskaloyannis, C. ‘Quadratic Poisson Algebras of Two-Dimensional Classical Superintegrable Systems and Quadratic Associative Algebras of Quantum Superintegrable Systems’. Journal of Mathematical Physics 42, no. 3 (1 March 2001): 1100–1119. doi:10.1063/1.1348026.
  • Daskaloyannis, C. ‘Generalized Deformed Oscillator and Nonlinear Algebras’. Journal of Physics A: Mathematical and General 24, no. 15 (7 August 1991): L789. doi:10.1088/0305-4470/24/15/001.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'superintegrable'}, {'LOWER': 'hamiltonian'}, {'LEMMA': 'system'}]