Vector valued differential forms

수학노트
둘러보기로 가기 검색하러 가기

introduction

exercise from Chern-Simons theory

\[S=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{2}{3}A\wedge A\wedge A)=\frac{k}{4\pi}\int_M \text{tr}\,(A\wedge dA+\tfrac{1}{3}A\wedge [A,A])\]


Let \(A=(a_1dx+A_1 dt)\otimes X_1 +(a_2dx+A_2dt)\otimes X_2\) be a vector valued form \[A\wedge A =(a_1A_2-a_2A_1)dx\wedge dt \otimes [X_1, X_2]\] \[[A,A]=2(a_1A_2-a_2A_1)dx\wedge dt \otimes [X_1, X_2]\]




related items



encyclopedia


question and answers(Math Overflow)

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'vector'}, {'OP': '*'}, {'LOWER': 'valued'}, {'LOWER': 'differential'}, {'LEMMA': 'form'}]