"분할수의 생성함수(오일러 함수)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[분할수의 생성함수(오일러 함수)]]<br>
 
* [[분할수의 생성함수(오일러 함수)]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
*  분할수의 생섬함수를 오일러함수라고도 한다<br>
 
*  분할수의 생섬함수를 오일러함수라고도 한다<br>
18번째 줄: 18번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">오일러의 오각수정리</h5>
+
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px;">오일러의 오각수정리==
  
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\prod_{n=1}^\infty (1-q^n)=\sum_{k=-\infty}^\infty(-1)^kq^{k(3k-1)/2}</math><br><math>(1-q)(1-q^2)(1-q^3) \cdots = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + q^{22} + q^{26} + \cdots</math><br>
 
* [[오일러의 오각수정리(pentagonal number theorem)]]<br><math>\prod_{n=1}^\infty (1-q^n)=\sum_{k=-\infty}^\infty(-1)^kq^{k(3k-1)/2}</math><br><math>(1-q)(1-q^2)(1-q^3) \cdots = 1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + q^{22} + q^{26} + \cdots</math><br>
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">q가 1에 가까울 때의 근사공식</h5>
+
<h5 style="margin: 0px; line-height: 2em;">q가 1에 가까울 때의 근사공식==
  
 
(정리)
 
(정리)
68번째 줄: 68번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">분할수의 근사공식</h5>
+
<h5 style="margin: 0px; line-height: 2em;">분할수의 근사공식==
  
 
* [[분할수의 근사 공식 (하디-라마누잔-라데마커 공식)|하디-라마누잔-라데마커 분할수 공식]]<br><math>p(n) \approx \frac{1}{\pi\sqrt{2}}\frac{Ke^{K\sqrt{n}}}{4n}=\frac {e^{\pi\sqrt{\frac{2n}{3}}}} {4\sqrt{3}n}</math><br>
 
* [[분할수의 근사 공식 (하디-라마누잔-라데마커 공식)|하디-라마누잔-라데마커 분할수 공식]]<br><math>p(n) \approx \frac{1}{\pi\sqrt{2}}\frac{Ke^{K\sqrt{n}}}{4n}=\frac {e^{\pi\sqrt{\frac{2n}{3}}}} {4\sqrt{3}n}</math><br>
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">q-초기하급수 형태로의 표현</h5>
+
<h5 style="margin: 0px; line-height: 2em;">q-초기하급수 형태로의 표현==
  
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]] 항목을 참조<br>
 
* [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]] 항목을 참조<br>
110번째 줄: 110번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">데데킨트 에타함수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">데데킨트 에타함수==
  
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>
118번째 줄: 118번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실==
  
 
 
 
 
129번째 줄: 129번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
 
 
 
141번째 줄: 141번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
  
 
 
 
 
147번째 줄: 147번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[데데킨트 에타함수]]<br>
 
* [[데데킨트 에타함수]]<br>
155번째 줄: 155번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
166번째 줄: 166번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
179번째 줄: 179번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
188번째 줄: 188번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
202번째 줄: 202번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
213번째 줄: 213번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 13:50 판

이 항목의 스프링노트 원문주소==    
개요==
  • 분할수의 생섬함수를 오일러함수라고도 한다
  • 분할수의 생성함수는 다음과 같이 무한곱으로 표현가능하다
    \(\sum_{n=0}^\infty p(n)q^n= 1+q+2 q^2+3 q^3+5 q^4+7 q^5+11 q^6+15 q^7+22 q^8+30 q^9+42 q^{10}+\cdots\)
\(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} \)    
오일러의 오각수정리==
  • 위의 급수는 오일러함수의 역이다
    \(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} \)
   
q가 1에 가까울 때의 근사공식== (정리) \(q\to 1\) 일 때, \(F(q)= \prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6(1-q)})\)   (증명) \(\log F(q)= \sum_{n=1}^\infty \log \frac {1}{1-q^n} \right =\sum_{m=1,n=1}^{\infty}\frac{q^{mn}}{m}=\sum_{m=1}\frac{q^m}{m(1-q^m)}\) \(1-q^m=(1-q)(1+q+\cdots+q^{m-1})\)  와 \(0<q<1\) 을 이용하면, \(mq^{m-1}(1-x)<1-q^m<m(1-q)\) 이다. 따라서, \(\frac{1}{1-q}\sum_{m=1}^{\infty}\frac{q^m}{m^2}< \sum_{n=1}^\infty \log \frac {1}{1-q^n} <\frac{1}{1-q}\sum_{m=1}^{\infty}\frac{q}{m^2}\)   q가 1에 가까워질 때,  \(\sum_{m=1}^{\infty}\frac{q^m}{m^2}\to \frac{\pi^2}{6}\),  \(\sum_{m=1}^{\infty}\frac{q}{m^2}\to \frac{\pi^2}{6}\) 이므로, \(F(q)= \prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6(1-q)})\) ■
  • \(q=e^{-\epsilon}\) 으로 두면 \(\epsilon\sim 0\) 일 때, \(1-q\sim \epsilon\) 이고  \(\prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6\epsilon})=\exp(\frac{(2\pi)^2}{24\epsilon})\) 을 얻는다
  • \(\pi^2/6\) 은 오일러와 바젤문제(완전제곱수의 역수들의 합)에 등장하는 수이다
  • Hardy's book 'Ramanujan' on partition asymptotics
     
분할수의 근사공식==      
q-초기하급수 형태로의 표현==   (정리) \(\sum_{n=0}^\infty p(n)q^n = \prod_{n=1}^\infty \frac {1}{1-q^n} \right = \prod_{n=1}^\infty (1-q^n)^{-1} =1+\sum_{n=1}^{\infty}\frac{q^n}{(1-q)(1-q^2)\cdots(1-q^n)}\)   (증명) 오일러의 무한곱공식을 적용. \(\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) ■     (정리) (Durfee square identity)        
데데킨트 에타함수==    
재미있는 사실==      
역사==      
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서==    
관련기사==    
블로그==