"일계 선형미분방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
14번째 줄: | 14번째 줄: | ||
− | <h5> | + | <h5>적분인자를 이용한 미분방정식의 풀이</h5> |
− | * <math>e^{\int a(x)\,dx}</math>를 미분방정식의 양변에 곱하여 다음을 얻는다<br><math>y'(x)e^{\int a(x)\,dx}+a(x)y(x)e^{\int a(x)\,dx}=b(x)e^{\int a(x) \, dx}</math><br> | + | * 적분인자 <math>e^{\int a(x)\,dx}</math>를 미분방정식의 양변에 곱하여 다음을 얻는다<br><math>y'(x)e^{\int a(x)\,dx}+a(x)y(x)e^{\int a(x)\,dx}=b(x)e^{\int a(x) \, dx}</math><br><math>(y(x)e^{\int a(x)\,dx})'=b(x)e^{\int a(x)\,dx}</math><br><math>y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C</math><br> |
− | + | ||
+ | |||
+ | |||
+ | |||
2011년 4월 29일 (금) 06:13 판
이 항목의 스프링노트 원문주소
개요
- 미분방정식
\(\frac{dy}{dx}+a(x)y=b(x)\) - 적분인자를 통하여 해를 구할 수 있다
적분인자를 이용한 미분방정식의 풀이
- 적분인자 \(e^{\int a(x)\,dx}\)를 미분방정식의 양변에 곱하여 다음을 얻는다
\(y'(x)e^{\int a(x)\,dx}+a(x)y(x)e^{\int a(x)\,dx}=b(x)e^{\int a(x) \, dx}\)
\((y(x)e^{\int a(x)\,dx})'=b(x)e^{\int a(x)\,dx}\)
\(y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)