"일계 선형미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
98번째 줄: 98번째 줄:
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 +
[[분류:미분방정식]]

2013년 1월 12일 (토) 08:25 판

개요

  • 미분방정식
    \(\frac{dy}{dx}+a(x)y=b(x)\)
  • 적분인자를 통하여 해를 구할 수 있다



적분인자를 이용한 미분방정식의 풀이

  • 적분인자 \(e^{\int a(x)\,dx}\)를 미분방정식의 양변에 곱하여 다음을 얻는다
    \(y'(x)e^{\int a(x)\,dx}+a(x)y(x)e^{\int a(x)\,dx}=b(x)e^{\int a(x) \, dx}\)
    \((y(x)e^{\int a(x)\,dx})'=b(x)e^{\int a(x)\,dx}\)
    \(y(x)e^{\int a(x)\,dx}=\int b(x)e^{\int a(x)\,dx} \,dx+C\)



예1

\(y'(t)+k y(t)=10 k e^{-k t}\) 의 경우

적분인자 \(e^{kt}\)를 양변에 곱하면,

\((y(t)e^{kt})'=10 k\) 를 얻는다.

따라서 \(y(t)e^{kt}=10 k t +y(0)\)

\(y(t)= y(0) e^{-k t}+10 k t e^{-k t}\)



역사



메모



관련된 항목들

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



관련논문