"유리계수 이차형식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
===예===
 
===예===
 
* $f(x,y,z)=3 x^2+2 y^2-11 z^2$는 등방형식이다. 예를 들어 $f(1,2,1)=(0,0,0)$
 
* $f(x,y,z)=3 x^2+2 y^2-11 z^2$는 등방형식이다. 예를 들어 $f(1,2,1)=(0,0,0)$
* $g(x,y,z)=3 x^2+2 y^2-7 z^2$는 비등방형식이다. $f(x,y,z)=0$을 만족하는 $(x,y,z)=\neq 0\in \mathbb{Q}^3$는 존재하지 않는다
+
* $g(x,y,z)=3 x^2+2 y^2-7 z^2$는 비등방형식이다. $f(x,y,z)=0$을 만족하는 $(x,y,z)\neq 0\in \mathbb{Q}^3$는 존재하지 않는다
  
  

2014년 1월 12일 (일) 15:53 판

개요


등방형식

  • $f(x,y,z)=3 x^2+2 y^2-11 z^2$는 등방형식이다. 예를 들어 $f(1,2,1)=(0,0,0)$
  • $g(x,y,z)=3 x^2+2 y^2-7 z^2$는 비등방형식이다. $f(x,y,z)=0$을 만족하는 $(x,y,z)\neq 0\in \mathbb{Q}^3$는 존재하지 않는다


관련된 항목들


사전 형태의 자료


관련도서

  • Serre, J.-P. 1973. A Course in Arithmetic. Springer.
    • 책의 절반은 유리수체 위에서 정의된 이차형식의 분류와 관련하여 local-global 원리를 증명함