"Generalized Cartan matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
2번째 줄: | 2번째 줄: | ||
* Cartan matrix encodes relative lenghths and angles among vectors in the root system. | * Cartan matrix encodes relative lenghths and angles among vectors in the root system. | ||
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms | * symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms | ||
+ | |||
+ | |||
+ | ==example== | ||
+ | * $G_2$ Cartan matrix | ||
+ | $$ | ||
+ | A=\left( | ||
+ | \begin{array}{cc} | ||
+ | 2 & -1 \\ | ||
+ | -3 & 2 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | * take $D$ as follows : | ||
+ | $$ | ||
+ | D=\left( | ||
+ | \begin{array}{cc} | ||
+ | 3 & 0 \\ | ||
+ | 0 & 1 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | * $DA=AD^{t}$ | ||
2013년 10월 8일 (화) 10:31 판
introduction
- Cartan matrix encodes relative lenghths and angles among vectors in the root system.
- symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
example
- $G_2$ Cartan matrix
$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$
- take $D$ as follows :
$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$
- $DA=AD^{t}$
Killing form