"Generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
* Cartan matrix encodes relative lenghths and angles among vectors in the root system.
 
* Cartan matrix encodes relative lenghths and angles among vectors in the root system.
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 +
 +
 +
==example==
 +
* $G_2$ Cartan matrix
 +
$$
 +
A=\left(
 +
\begin{array}{cc}
 +
2 & -1 \\
 +
-3 & 2 \\
 +
\end{array}
 +
\right)
 +
$$
 +
* take $D$ as follows :
 +
$$
 +
D=\left(
 +
\begin{array}{cc}
 +
3 & 0 \\
 +
0 & 1 \\
 +
\end{array}
 +
\right)
 +
$$
 +
* $DA=AD^{t}$
  
  

2013년 10월 8일 (화) 10:31 판

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system.
  • symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms


example

  • $G_2$ Cartan matrix

$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$

  • take $D$ as follows :

$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$

  • $DA=AD^{t}$


related items


Killing form


computational resource