Generalized Cartan matrix

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system


Cartan matrix of a simple Lie algebra

  • In semi-simple Lie theory, a cartan matrix is a square matrix
    • For diagonal entries, \(a_{ii} = 2\).
    • For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
    • If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
    • \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)


generalized Cartan matrix

  • A generalized Cartan matrix is a square matrix \(A = (a_{ij})\) with integer entries such that
    • For diagonal entries, \(a_{ii} = 2\).
    • For non-diagonal entries, \(a_{ij} \leq 0 \).
    • \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)
  • an \(n\times n\) matrix \(A=(a_{ij})\) is called a generalised Cartan matrix if it satisfies the conditions
  1. \(a_{ii}=2\) for \(i=1,\cdots,n\)
  2. \(a_{ij}\in \mathbb{Z}\) and \(a_{ij}\leq 0\) if \(i\neq j\)
  3. \(a_{ij}=0\) impies \(a_{ji}=0\)

classification of generalized Cartan matrix

  • A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
  • A GCM A has finite type if
    • \(\text{det }A\neq 0\)
    • there exists \(u>0\) with \(Au>0\)
    • \(Au\geq 0\) implies \(u>0\) or \(u=0\)
  • A GCM A has affine type if
    • \(\text{corank }A=1\)
    • there exists \(u>0\) such that \(Au=0\)
    • \(Au\geq 0\) implies \(Au=0\)
  • A GCM A has indefinite type if
    • there exists \(u>0\) with \(Au<0\)
    • \(Au\geq 0\) and \(u\geq 0\) implies \(u>0\) or \(u=0\)


main result

  • Let \(A\) be an indecomposable GCM. Then exactly one of the following three possibilities holds:
    • \(A\) has finite type
    • \(A\) has affine type
    • \(A\) has indefinite type
  • Moreover the type of \(A^t\) is the same as the type of \(A\).
cor

Let \(A\) be an indecomposable GCM. Then

  1. A GCM A has finite type if and only if there exists \(u>0\) with \(Au>0\)
  2. A GCM A has affine type if and only if there exists \(u>0\) with \(Au=0\)
  3. A GCM A has indefinite type if and only if there exists \(u>0\) with \(Au<0\)
  • R.Carter's 'Lie algebras of finite and affine type' 337~344p
  • Now we turn to the classification of GCM of affine and finite type.

related items

computational resource

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cartan'}, {'LEMMA': 'matrix'}]