Generalized Cartan matrix
둘러보기로 가기
검색하러 가기
introduction
- Cartan matrix encodes relative lenghths and angles among vectors in the root system
Cartan matrix of a simple Lie algebra
- In semi-simple Lie theory, a cartan matrix is a square matrix
- For diagonal entries, \(a_{ii} = 2\).
- For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
- If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
- \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)
generalized Cartan matrix
- A generalized Cartan matrix is a square matrix \(A = (a_{ij})\) with integer entries such that
- For diagonal entries, \(a_{ii} = 2\).
- For non-diagonal entries, \(a_{ij} \leq 0 \).
- \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)
- an \(n\times n\) matrix \(A=(a_{ij})\) is called a generalised Cartan matrix if it satisfies the conditions
- \(a_{ii}=2\) for \(i=1,\cdots,n\)
- \(a_{ij}\in \mathbb{Z}\) and \(a_{ij}\leq 0\) if \(i\neq j\)
- \(a_{ij}=0\) impies \(a_{ji}=0\)
classification of generalized Cartan matrix
- A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
- A GCM A has finite type if
- \(\text{det }A\neq 0\)
- there exists \(u>0\) with \(Au>0\)
- \(Au\geq 0\) implies \(u>0\) or \(u=0\)
- A GCM A has affine type if
- \(\text{corank }A=1\)
- there exists \(u>0\) such that \(Au=0\)
- \(Au\geq 0\) implies \(Au=0\)
- A GCM A has indefinite type if
- there exists \(u>0\) with \(Au<0\)
- \(Au\geq 0\) and \(u\geq 0\) implies \(u>0\) or \(u=0\)
main result
- Let \(A\) be an indecomposable GCM. Then exactly one of the following three possibilities holds:
- \(A\) has finite type
- \(A\) has affine type
- \(A\) has indefinite type
- Moreover the type of \(A^t\) is the same as the type of \(A\).
- cor
Let \(A\) be an indecomposable GCM. Then
- A GCM A has finite type if and only if there exists \(u>0\) with \(Au>0\)
- A GCM A has affine type if and only if there exists \(u>0\) with \(Au=0\)
- A GCM A has indefinite type if and only if there exists \(u>0\) with \(Au<0\)
- R.Carter's 'Lie algebras of finite and affine type' 337~344p
- Now we turn to the classification of GCM of affine and finite type.
- Rank 2 generalized Cartan matrix
- Skew-symmetrizable matrix
- Killing form and invariant symmetric bilinear form
- Symmetrizable generalized Cartan matrix
computational resource
메타데이터
위키데이터
- ID : Q2004951
Spacy 패턴 목록
- [{'LOWER': 'cartan'}, {'LEMMA': 'matrix'}]