"Generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
  
 +
 +
==generalized Cartan matrix==
 +
* an $n\times n$ matrix $A=(a_{ij})$  is called a generalised Cartan matrix if it satisfies the conditions
 +
# $a_{ii}=2$ for $i=1,\cdots,n$
 +
# $a_{ij}\in \mathbb{Z}$ and $a_{ij}\leq 0$ if $i\neq j$
 +
# $a_{ij}=0$ impies $a_{ji}=0$
  
 
==example==
 
==example==

2015년 3월 10일 (화) 19:48 판

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system.
  • symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms


generalized Cartan matrix

  • an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions
  1. $a_{ii}=2$ for $i=1,\cdots,n$
  2. $a_{ij}\in \mathbb{Z}$ and $a_{ij}\leq 0$ if $i\neq j$
  3. $a_{ij}=0$ impies $a_{ji}=0$

example

  • Cartan matrix of $G_2$

$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$

  • take $D$ as follows :

$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$

  • Then $DA=A^{t}D$ is a symmetric matrix

$$ \left( \begin{array}{cc} 6 & -3 \\ -3 & 2 \\ \end{array} \right) $$


related items

Killing form


computational resource