"Generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Generalized Cartan matrix and symmetrizable matrix 문서를 Generalized Cartan matrix 문서로 옮겼습니다.)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* Cartan matrix encodes relative lenghths and angles among vectors in the root system.
 
* Cartan matrix encodes relative lenghths and angles among vectors in the root system.
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 
 
 
* In semi-simple Lie theory, a cartan matrix is a square matrix
 
* In semi-simple Lie theory, a cartan matrix is a square matrix
 
** For diagonal entries, <math>a_{ii} = 2</math>.
 
** For diagonal entries, <math>a_{ii} = 2</math>.
45번째 줄: 43번째 줄:
 
* R.Carter's 'Lie algebras of finite and affine type' 337~344p
 
* R.Carter's 'Lie algebras of finite and affine type' 337~344p
 
* Now we turn to the classification of GCM of affine and finite type.
 
* Now we turn to the classification of GCM of affine and finite type.
 
 
 
==example==
 
* Cartan matrix of $G_2$
 
$$
 
A=\left(
 
\begin{array}{cc}
 
2 & -1 \\
 
-3 & 2 \\
 
\end{array}
 
\right)
 
$$
 
* take $D$ as follows :
 
$$
 
D=\left(
 
\begin{array}{cc}
 
3 & 0 \\
 
0 & 1 \\
 
\end{array}
 
\right)
 
$$
 
* Then $DA=A^{t}D$ is a symmetric matrix
 
$$
 
\left(
 
\begin{array}{cc}
 
6 & -3 \\
 
-3 & 2 \\
 
\end{array}
 
\right)
 
$$
 
  
  

2015년 4월 1일 (수) 20:55 판

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system.
  • In semi-simple Lie theory, a cartan matrix is a square matrix
    • For diagonal entries, \(a_{ii} = 2\).
    • For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
    • If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
    • $a_{ij} = 0$ if and only if $a_{ji} = 0$
  • A generalized Cartan matrix is a square matrix $A = (a_{ij})$ with integer entries such that
    • For diagonal entries, $a_{ii} = 2$.
    • For non-diagonal entries, $a_{ij} \leq -1 $.
    • $a_{ij} = 0$ if and only if $a_{ji} = 0$


generalized Cartan matrix

  • an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions
  1. $a_{ii}=2$ for $i=1,\cdots,n$
  2. $a_{ij}\in \mathbb{Z}$ and $a_{ij}\leq 0$ if $i\neq j$
  3. $a_{ij}=0$ impies $a_{ji}=0$


classification of generalized Cartan matrix

  • A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
  • A GCM A has finite type if
    • $\text{det }A\neq 0$
    • there exists $u>0$ with $Au>0$
    • $Au\geq 0$ implies $u>0$ or $u=0$
  • A GCM A has affine type if
    • $\text{rank }A=1$
    • there exists $u>0$ such that $Au=0$
    • $Au\geq 0$ implies $Au=0$
  • A GCM A has indefinite type if
    • there exists $u>0$ with $Au<0$
    • $Au\geq 0$ and $u\geq 0$ implies $u>0$ or $u=0$


main result

  • Let $A$ be an indecomposable GCM. Then exactly one of the following three possibilities holds:
    • $A$ has finite type
    • $A$ has affine type
    • $A$ has indefinite type
  • Moreover the type of $A^t$ is the same as the type of $A$.
  • R.Carter's 'Lie algebras of finite and affine type' 337~344p
  • Now we turn to the classification of GCM of affine and finite type.


related items

Killing form


computational resource