"Generalized Cartan matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * Cartan matrix encodes relative lenghths and angles among vectors in the root system | + | * Cartan matrix encodes relative lenghths and angles among vectors in the root system |
+ | |||
+ | |||
+ | ==Cartan matrix of a simple Lie algebra== | ||
* In semi-simple Lie theory, a cartan matrix is a square matrix | * In semi-simple Lie theory, a cartan matrix is a square matrix | ||
** For diagonal entries, <math>a_{ii} = 2</math>. | ** For diagonal entries, <math>a_{ii} = 2</math>. | ||
6번째 줄: | 9번째 줄: | ||
** If <math>a_{ij} = -2\text{ or }-3</math> then <math>a_{ji} = 0</math> | ** If <math>a_{ij} = -2\text{ or }-3</math> then <math>a_{ji} = 0</math> | ||
** $a_{ij} = 0$ if and only if $a_{ji} = 0$ | ** $a_{ij} = 0$ if and only if $a_{ji} = 0$ | ||
+ | |||
+ | |||
+ | ==generalized Cartan matrix== | ||
* A generalized Cartan matrix is a square matrix $A = (a_{ij})$ with integer entries such that | * A generalized Cartan matrix is a square matrix $A = (a_{ij})$ with integer entries such that | ||
** For diagonal entries, $a_{ii} = 2$. | ** For diagonal entries, $a_{ii} = 2$. | ||
** For non-diagonal entries, $a_{ij} \leq -1 $. | ** For non-diagonal entries, $a_{ij} \leq -1 $. | ||
** $a_{ij} = 0$ if and only if $a_{ji} = 0$ | ** $a_{ij} = 0$ if and only if $a_{ji} = 0$ | ||
− | |||
− | |||
− | |||
− | |||
* an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions | * an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions | ||
# $a_{ii}=2$ for $i=1,\cdots,n$ | # $a_{ii}=2$ for $i=1,\cdots,n$ |
2015년 4월 1일 (수) 21:01 판
introduction
- Cartan matrix encodes relative lenghths and angles among vectors in the root system
Cartan matrix of a simple Lie algebra
- In semi-simple Lie theory, a cartan matrix is a square matrix
- For diagonal entries, \(a_{ii} = 2\).
- For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
- If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
- $a_{ij} = 0$ if and only if $a_{ji} = 0$
generalized Cartan matrix
- A generalized Cartan matrix is a square matrix $A = (a_{ij})$ with integer entries such that
- For diagonal entries, $a_{ii} = 2$.
- For non-diagonal entries, $a_{ij} \leq -1 $.
- $a_{ij} = 0$ if and only if $a_{ji} = 0$
- an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions
- $a_{ii}=2$ for $i=1,\cdots,n$
- $a_{ij}\in \mathbb{Z}$ and $a_{ij}\leq 0$ if $i\neq j$
- $a_{ij}=0$ impies $a_{ji}=0$
classification of generalized Cartan matrix
- A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
- A GCM A has finite type if
- $\text{det }A\neq 0$
- there exists $u>0$ with $Au>0$
- $Au\geq 0$ implies $u>0$ or $u=0$
- A GCM A has affine type if
- $\text{rank }A=1$
- there exists $u>0$ such that $Au=0$
- $Au\geq 0$ implies $Au=0$
- A GCM A has indefinite type if
- there exists $u>0$ with $Au<0$
- $Au\geq 0$ and $u\geq 0$ implies $u>0$ or $u=0$
main result
- Let $A$ be an indecomposable GCM. Then exactly one of the following three possibilities holds:
- $A$ has finite type
- $A$ has affine type
- $A$ has indefinite type
- Moreover the type of $A^t$ is the same as the type of $A$.
- R.Carter's 'Lie algebras of finite and affine type' 337~344p
- Now we turn to the classification of GCM of affine and finite type.
- Rank 2 generalized Cartan matrix
- Skew-symmetrizable matrix
- Killing form and invariant symmetric bilinear form