"Generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* Cartan matrix encodes relative lenghths and angles among vectors in the root system.
+
* Cartan matrix encodes relative lenghths and angles among vectors in the root system
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 
  
  
==related items==
+
==Cartan matrix of a simple Lie algebra==
* [[Rank 2 generalized Cartan matrix]]
+
* In semi-simple Lie theory, a cartan matrix is a square matrix
 +
** For diagonal entries, <math>a_{ii} = 2</math>.
 +
** For non-diagonal entries, <math>a_{ij} \in {0,-1,-2,-3}</math>
 +
** If <math>a_{ij} = -2\text{ or }-3</math> then <math>a_{ji} = 0</math>
 +
** <math>a_{ij} = 0</math> if and only if <math>a_{ji} = 0</math>
 +
 
 +
 
 +
==generalized Cartan matrix==
 +
* A generalized Cartan matrix is a square matrix <math>A = (a_{ij})</math> with integer entries such that
 +
** For diagonal entries, <math>a_{ii} = 2</math>.
 +
** For non-diagonal entries, <math>a_{ij} \leq 0 </math>.
 +
** <math>a_{ij} = 0</math> if and only if <math>a_{ji} = 0</math>
 +
* an <math>n\times n</math> matrix <math>A=(a_{ij})</math>  is called a generalised Cartan matrix if it satisfies the conditions
 +
# <math>a_{ii}=2</math> for <math>i=1,\cdots,n</math>
 +
# <math>a_{ij}\in \mathbb{Z}</math> and <math>a_{ij}\leq 0</math> if <math>i\neq j</math>
 +
# <math>a_{ij}=0</math> impies <math>a_{ji}=0</math>
 +
 
 +
==classification of generalized Cartan matrix==
 +
* A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
 +
* A GCM A has finite type if
 +
** <math>\text{det }A\neq 0</math>
 +
** there exists <math>u>0</math> with <math>Au>0</math>
 +
** <math>Au\geq 0</math> implies <math>u>0</math> or <math>u=0</math>
 +
* A GCM A has affine type if
 +
** <math>\text{corank }A=1</math>
 +
** there exists <math>u>0</math> such that <math>Au=0</math>
 +
** <math>Au\geq 0</math> implies <math>Au=0</math>
 +
* A GCM A has indefinite type if
 +
** there exists <math>u>0</math> with <math>Au<0</math>
 +
** <math>Au\geq 0</math> and <math>u\geq 0</math> implies <math>u>0</math> or <math>u=0</math>
 +
 
 +
 
 +
====main result====
 +
* Let <math>A</math> be an indecomposable GCM. Then exactly one of the following three possibilities holds:
 +
** <math>A</math> has finite type
 +
** <math>A</math> has affine type
 +
** <math>A</math> has indefinite type
 +
* Moreover the type of <math>A^t</math> is the same as the type of <math>A</math>.
  
 +
;cor
 +
Let <math>A</math> be an indecomposable GCM. Then
 +
# A GCM A has finite type if and only if there exists <math>u>0</math> with <math>Au>0</math>
 +
# A GCM A has affine type if and only if there exists <math>u>0</math> with <math>Au=0</math>
 +
# A GCM A has indefinite type if and only if there exists <math>u>0</math> with <math>Au<0</math>
  
 +
* R.Carter's 'Lie algebras of finite and affine type' 337~344p
 +
* Now we turn to the classification of GCM of affine and finite type.
  
==Killing form==
+
==related items==
 +
* [[Rank 2 generalized Cartan matrix]]
 +
* [[Skew-symmetrizable matrix]]
 
* [[Killing form and invariant symmetric bilinear form]]
 
* [[Killing form and invariant symmetric bilinear form]]
 +
* [[Symmetrizable generalized Cartan matrix]]
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxWGFXeWtoYTVyTlk/edit
  
 +
[[분류:Lie theory]]
 +
[[분류:migrate]]
  
==computational resource==
+
==메타데이터==
* https://docs.google.com/file/d/0B8XXo8Tve1cxdlBHdXA5THp3SFE/edit
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q2004951 Q2004951]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'cartan'}, {'LEMMA': 'matrix'}]

2021년 2월 17일 (수) 02:33 기준 최신판

introduction

  • Cartan matrix encodes relative lenghths and angles among vectors in the root system


Cartan matrix of a simple Lie algebra

  • In semi-simple Lie theory, a cartan matrix is a square matrix
    • For diagonal entries, \(a_{ii} = 2\).
    • For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
    • If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
    • \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)


generalized Cartan matrix

  • A generalized Cartan matrix is a square matrix \(A = (a_{ij})\) with integer entries such that
    • For diagonal entries, \(a_{ii} = 2\).
    • For non-diagonal entries, \(a_{ij} \leq 0 \).
    • \(a_{ij} = 0\) if and only if \(a_{ji} = 0\)
  • an \(n\times n\) matrix \(A=(a_{ij})\) is called a generalised Cartan matrix if it satisfies the conditions
  1. \(a_{ii}=2\) for \(i=1,\cdots,n\)
  2. \(a_{ij}\in \mathbb{Z}\) and \(a_{ij}\leq 0\) if \(i\neq j\)
  3. \(a_{ij}=0\) impies \(a_{ji}=0\)

classification of generalized Cartan matrix

  • A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
  • A GCM A has finite type if
    • \(\text{det }A\neq 0\)
    • there exists \(u>0\) with \(Au>0\)
    • \(Au\geq 0\) implies \(u>0\) or \(u=0\)
  • A GCM A has affine type if
    • \(\text{corank }A=1\)
    • there exists \(u>0\) such that \(Au=0\)
    • \(Au\geq 0\) implies \(Au=0\)
  • A GCM A has indefinite type if
    • there exists \(u>0\) with \(Au<0\)
    • \(Au\geq 0\) and \(u\geq 0\) implies \(u>0\) or \(u=0\)


main result

  • Let \(A\) be an indecomposable GCM. Then exactly one of the following three possibilities holds:
    • \(A\) has finite type
    • \(A\) has affine type
    • \(A\) has indefinite type
  • Moreover the type of \(A^t\) is the same as the type of \(A\).
cor

Let \(A\) be an indecomposable GCM. Then

  1. A GCM A has finite type if and only if there exists \(u>0\) with \(Au>0\)
  2. A GCM A has affine type if and only if there exists \(u>0\) with \(Au=0\)
  3. A GCM A has indefinite type if and only if there exists \(u>0\) with \(Au<0\)
  • R.Carter's 'Lie algebras of finite and affine type' 337~344p
  • Now we turn to the classification of GCM of affine and finite type.

related items

computational resource

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cartan'}, {'LEMMA': 'matrix'}]