"바이어슈트라스 시그마 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[바이어슈트라스 시그마 함수]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
74번째 줄: 66번째 줄:
  
 
==역사==
 
==역사==
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [http://jeff560.tripod.com/mathword.html Earliest Known Uses of Some of the Words of Mathematics]
 
* [http://jeff560.tripod.com/mathsym.html Earliest Uses of Various Mathematical Symbols]
 
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
105번째 줄: 91번째 줄:
 
 
 
 
  
 
 
 
==수학용어번역==
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 
 
==매스매티카 파일 및 계산 리소스[[7391409/attachments/4910061|7391409/attachments/4910061]]==
 
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZGYzZjY0MWMtZjA1NC00NjNlLWJjNGEtMWZmYTI3N2U0NTA5&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZGYzZjY0MWMtZjA1NC00NjNlLWJjNGEtMWZmYTI3N2U0NTA5&sort=name&layout=list&num=50
 
* http://www.wolframalpha.com/input/?i=weierstrass+sigma+function
 
* http://www.wolframalpha.com/input/?i=weierstrass+sigma+function
* [http://eom.springer.de/w/w097450.htm The Online Encyclopaedia of Mathematics]<br>
+
* [http://eom.springer.de/w/w097450.htm The Online Encyclopaedia of Mathematics]
 
** [http://eom.springer.de/w/w097450.htm Weierstrass elliptic functions]
 
** [http://eom.springer.de/w/w097450.htm Weierstrass elliptic functions]
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br>
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
** http://dlmf.nist.gov/23.2#ii
 
** http://dlmf.nist.gov/23.2#ii
  
* [[매스매티카 파일 목록]][http://www.research.att.com/%7Enjas/sequences/index.html ]
 
 
 
 
  
 
 
 
 
142번째 줄: 113번째 줄:
  
 
 
 
 
 
 
 
 
 
  
151번째 줄: 121번째 줄:
 
* Braden, Harry W, Victor Z Enolskii, and  Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”. <em>math/0501162</em> (1월 11). http://arxiv.org/abs/math/0501162
 
* Braden, Harry W, Victor Z Enolskii, and  Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”. <em>math/0501162</em> (1월 11). http://arxiv.org/abs/math/0501162
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
 
 
 

2013년 6월 16일 (일) 02:01 판

개요

  • 바이어슈트라스의 타원함수 이론에 등장
  • 사인함수와 비슷한 역할을 함
  • 격자에 대해 정의되며, 무한곱으로 정의되는 복소함수\[\sigma(z;\Lambda)=z\prod_{w\in\Lambda^{*}} \left(1-\frac{z}{w}\right) e^{z/w+\frac{1}{2}(z/w)^2}\]
  • 격자 \(\Lambda\)의 불변량 \(g_2= 60\sum{}' \omega_{m,n}^{-4}\), \(g_3=140\sum{}' \omega_{m,n}^{-6}\) 을 사용하여, \(\sigma(z;\Lambda)= \sigma \left(z;g_2,g_3\right)\) 로 쓰기도 함

 

 

로랑급수

  • z=0 부근에서 시그마함수는 다음과 같은 로랑급수 전개를 가진다\[\sigma \left(z;g_2,g_3\right)= z-\frac{g_2 z^5}{240}-\frac{g_3 z^7}{840}-\frac{g_2^2 z^9}{161280}-\frac{g_2g_3 z^{11}}{2217600}+\]

 

 

바이어슈트라스 타원함수 ℘ 와의 관계

 

 

 

세타함수로서의 시그마함수

\(\sigma(z+\omega_{i})=-e^{\eta_{i}(z+\omega_{i}/2)}\sigma(z)\) 

\(\sigma(z+2\omega_{i})=e^{\eta _i \left(2z+2\omega _i\right)} \sigma(z)\)

\(\sigma(z+3\omega_{i})=-e^{\eta_{i}(3z+9\omega_{i}/2)}\sigma(z)\)

\(\sigma(z+n\omega_{i})=(-1)^n e^{\eta_{i}(n z+n^2 \omega_{i}/2)}\sigma(z)\)

 

 

 

타원함수론

모든 정수 n에 대하여, 아래의 함수 \(f(z)\)는 타원함수이다

\(f(z)=\frac{\sigma(nz)}{\sigma(z)^{n^2}}\)

(증명)

\(f(z+\omega_{i})=f(z)\) 임을 보이자.

\(\sigma(z+\omega_{i})=-e^{\eta_{i}(z+\omega_{i}/2)}\sigma(z)\) 이므로, \(\sigma(z+\omega_{i})^{n^2}=(-1)^{n^2} e^{\eta_{i}(n^2 z+n^2 \omega_{i}/2)}\sigma(z)^{n^2}\)

\(\sigma(z+n\omega_{i})=(-1)^n e^{\eta_{i}(n z+n^2 \omega_{i}/2)}\sigma(z)\) 이므로 \(\sigma(n(z+\omega_{i}))=(-1)^n e^{\eta_{i}(n^2 z+n^2 \omega_{i}/2)}\sigma(n z)\).

\(f(z+\omega_{i}))=\frac{\sigma(n(z+\omega_{i}))}{\sigma(z+\omega_{i})^{n^2}}=\frac{\sigma(nz)}{\sigma(z)^{n^2}}=f(z)\). ■

 

 

역사

 

 

메모

 

 

 

관련된 항목들

 


 

매스매티카 파일 및 계산 리소스


 

사전 형태의 자료

   

관련논문

  • Hone, A. N. W. 2007. Sigma function solution of the initial value problem for Somos 5 sequences doi:0.1090/S0002-9947-07-04215-8
  • Hone, A. N. W. 2005. Elliptic Curves and Quadratic Recurrence Sequences. Bulletin of the London Mathematical Society 37, no. 2 (April 1): 161 -171. doi:10.1112/S0024609304004163.
  • Braden, Harry W, Victor Z Enolskii, and  Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions”. math/0501162 (1월 11). http://arxiv.org/abs/math/0501162