Generalized Cartan matrix
imported>Pythagoras0님의 2015년 4월 1일 (수) 20:54 판 (Pythagoras0 사용자가 Generalized Cartan matrix and symmetrizable matrix 문서를 Generalized Cartan matrix 문서로 옮겼습니다.)
introduction
- Cartan matrix encodes relative lenghths and angles among vectors in the root system.
- symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
- In semi-simple Lie theory, a cartan matrix is a square matrix
- For diagonal entries, \(a_{ii} = 2\).
- For non-diagonal entries, \(a_{ij} \in {0,-1,-2,-3}\)
- If \(a_{ij} = -2\text{ or }-3\) then \(a_{ji} = 0\)
- $a_{ij} = 0$ if and only if $a_{ji} = 0$
- A generalized Cartan matrix is a square matrix $A = (a_{ij})$ with integer entries such that
- For diagonal entries, $a_{ii} = 2$.
- For non-diagonal entries, $a_{ij} \leq -1 $.
- $a_{ij} = 0$ if and only if $a_{ji} = 0$
generalized Cartan matrix
- an $n\times n$ matrix $A=(a_{ij})$ is called a generalised Cartan matrix if it satisfies the conditions
- $a_{ii}=2$ for $i=1,\cdots,n$
- $a_{ij}\in \mathbb{Z}$ and $a_{ij}\leq 0$ if $i\neq j$
- $a_{ij}=0$ impies $a_{ji}=0$
classification of generalized Cartan matrix
- A GCM is called indecomposable if it is not equivalent to a diagonal sum of two smaller GCMs.
- A GCM A has finite type if
- $\text{det }A\neq 0$
- there exists $u>0$ with $Au>0$
- $Au\geq 0$ implies $u>0$ or $u=0$
- A GCM A has affine type if
- $\text{rank }A=1$
- there exists $u>0$ such that $Au=0$
- $Au\geq 0$ implies $Au=0$
- A GCM A has indefinite type if
- there exists $u>0$ with $Au<0$
- $Au\geq 0$ and $u\geq 0$ implies $u>0$ or $u=0$
main result
- Let $A$ be an indecomposable GCM. Then exactly one of the following three possibilities holds:
- $A$ has finite type
- $A$ has affine type
- $A$ has indefinite type
- Moreover the type of $A^t$ is the same as the type of $A$.
- R.Carter's 'Lie algebras of finite and affine type' 337~344p
- Now we turn to the classification of GCM of affine and finite type.
example
- Cartan matrix of $G_2$
$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$
- take $D$ as follows :
$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$
- Then $DA=A^{t}D$ is a symmetric matrix
$$ \left( \begin{array}{cc} 6 & -3 \\ -3 & 2 \\ \end{array} \right) $$
Killing form