가우스-쿠즈민 분포

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 실수 \(\alpha\in (0,1)\)의 단순연분수 전개에서 나타나는 수의 분포에 대한 결과


가우스-쿠즈민 분포

기호

  • 연분수 전개 \(\alpha=[a_0;a_1,a_2,\cdots,]\), \(a_0=0\), \(a_n\in \mathbb{Z}_{>0}\)
  • \(n\geq 0\)에 대하여 \(\alpha_n\)을 \(\alpha=[a_0;a_1,a_2,\cdots, a_{n-1},\alpha_{n}]\)를 만족하도록 정의하자. \(\alpha_0=\alpha\)
  • \(\alpha_n\)의 분수부분 \(x_n(\alpha),\, 0\leq x_n(\alpha)< 1\)을 생각하자, 즉

\[x_n(\alpha)=\alpha_n-a_n\]

  • \(\mu_n(x)=\ell(\{\alpha:x_n(\alpha)<x\})\) 여기서 \(\ell\)는 \(\mathbb{R}\)의 르벡 측도


정리 (가우스,쿠즈민, 레비)

적당한 상수 \(C>0,\lambda>0\)에 대하여, 다음이 성립한다 \[ |\mu_n(x)-\log_2 (1+x)|<Ce^{-\lambda n} \]

  • \(k\leq \alpha_{n+1}<k+1\)이 될 조건은 \(\frac{1}{k+1}<x_n(\alpha)\leq \frac{1}{k}\)와 동치이다
  • 따라서

\[\ell(\{\alpha\in (0,1):a_{n+1}(\alpha)=k\})=\mu_n(\frac{1}{k})-\mu_n(\frac{1}{k+1})\]

  • 이로부터 다음을 얻는다

\[ \lim_{n\to \infty}\ell(\{\alpha\in (0,1):a_{n+1}(\alpha)=k\})=\log_2\left(1+\frac{1}{k(k+2)}\right)\sim \frac{1}{\log 2}\frac{1}{k^2} \]

  • 가령 \(n>>0\)에 대하여 \(a_{n+1}(\alpha)=1\)을 만족하는 실수집합의 르벡측도는 \(2-\log_2 3=0.415037499\cdots\)에 가까워진다


  • 원주율에 대한 연분수 전개를 생각하자
  • \(\pi-3=[0; 7, 15, 1, 292, 1, 1, 1, 2, 1,\cdots]\)
  • \(a_1=7,a_2=15,a_3=1,\cdots\)라 두자
  • 집합 \(S_n=\{k|a_k=n,1\leq k\leq 100000\}\)라 두자

\[ \begin{array}{c|c|c} n & |S_n|/100000 & \log_2\left(1+\frac{1}{n(n+2)}\right) \\ \hline 1 & 0.4149 & 0.4150 \\ 2 & 0.1700 & 0.1699 \\ 3 & 0.09236 & 0.09311 \\ 4 & 0.06034 & 0.05889 \\ 5 & 0.04118 & 0.04064 \\ 6 & 0.02930 & 0.02975 \\ 7 & 0.02352 & 0.02272 \\ 8 & 0.01793 & 0.01792 \\ 9 & 0.01452 & 0.01450 \\ 10 & 0.01173 & 0.01197 \\ \cdots & \cdots & \cdots \end{array} \]

메모


매스매티카 파일 및 계산 리소스


관련논문

  • Costa, Robert, Patrick Dynes, and Clayton Petsche. “A P-Adic Perron-Frobenius Theorem.” arXiv:1509.01702 [math], September 5, 2015. http://arxiv.org/abs/1509.01702.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gauss'}, {'OP': '*'}, {'LOWER': 'kuzmin'}, {'LEMMA': 'distribution'}]