겔폰드-슈나이더 정리

수학노트
둘러보기로 가기 검색하러 가기

겔폰드-슈나이더 정리[편집]

(정리) 겔폰드-슈나이더, 1934

\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =e^{\beta \log \alpha}\) 는 초월수이다.



겔폰드 상수[편집]

  • \(e^\pi\) 를 겔폰드 상수라 함
  • \(e^\pi=(e^{i\pi})^{-i}=(-1)^{i}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.



겔폰드-슈나이더 상수[편집]

  • \(2^{\sqrt2}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.



또다른 예[편집]

  • \(e^{\pi \sqrt{163}}=(e^{-i\pi})^{\sqrt{-163}}=(-1)^{\sqrt{-163}}\) 이므로 초월수이다 숫자 163



역사[편집]




관련된 항목들[편집]

사전 형태의 자료[편집]




관련링크와 웹페이지[편집]



블로그[편집]

메타데이터[편집]

위키데이터[편집]