"구면조화함수(spherical harmonics)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/9771072">3차원 공간의 회전과 SO(3)</a>페이지로 이동하였습니다.)
15번째 줄: 15번째 줄:
  
 
<h5 style="line-height: 2em; margin: 0px;">예</h5>
 
<h5 style="line-height: 2em; margin: 0px;">예</h5>
 +
 +
*  l=0<br>
 +
 +
<math>\left( \begin{array}{ccc}  0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)</math>
 +
 +
*  l=1<br>
 +
 +
<math>\left( \begin{array}{ccc}  1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\  1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\  1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)</math>
 +
 +
*  l=2<br>
 +
 +
<math>\left( \begin{array}{ccc}  2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\  2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\  2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\  2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)</math>
 +
 +
*  l=3<br>
 +
 +
<math>\left( \begin{array}{ccc}  3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\  3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\  3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\  3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\  3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)</math>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">내적</h5>
 +
 +
 
  
 
 
 
 

2011년 12월 3일 (토) 15:56 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

  • l=0

\(\left( \begin{array}{ccc} 0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)\)

  • l=1

\(\left( \begin{array}{ccc} 1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\ 1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\ 1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)\)

  • l=2

\(\left( \begin{array}{ccc} 2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\ 2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\ 2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)\)

  • l=3

\(\left( \begin{array}{ccc} 3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\ 3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\ 3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)\)

 

 

 

 

내적

 

 

 

 

 

단위구면의 라플라시안
  • 구면(sphere), 라플라시안(Laplacian)
    \(\Delta_{S^2} f = {1 \over \sin \theta} {\partial \over \partial \theta} \left( \sin \theta {\partial f \over \partial \theta} \right) + {1 \over \sin^2 \theta} {\partial^2 f \over \partial \varphi^2}\)

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그